Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure

dc.contributor.authorMuñoz San Martín, Sagrario
dc.contributor.authorSebastián Franco, José Luis
dc.contributor.authorSancho Ruíz, Miguel
dc.contributor.authorMiranda Pantoja, José Miguel
dc.date.accessioned2023-06-20T10:40:49Z
dc.date.available2023-06-20T10:40:49Z
dc.date.issued2003-06-07
dc.description© IOP Publishing Ltd. This work has been sponsored by the Ministerio de Ciencia y Tecnologia, project FIT-070000-2002-135.
dc.description.abstractThis paper shows the importance of using realistic cell shapes with the proper geometry and orientation to study the mechanisms of direct cellular effects from radiofrequency (RF) exposure. For this purpose, the electric field distribution within erythrocyte, rod and ellipsoidal cell models is calculated by using a finite element technique with adaptive meshing. The three cell models are exposed to linearly polarized electromagnetic plane waves of frequencies 900 and 2450 MHz. The results show that the amplification of the electric field within the membrane of the erythrocyte shape cell is more significant than that observed in other cell geometries. The results obtained show the dependence of the induced electric field distribution on frequency, electrical properties of membrane and cytoplasm and the orientation of the cell with respect to the applied field. The analysis of the transition of an erythrocyte shape to an ellipsoidal one shows that a uniformly shelled ellipsoid model is a rough approximation if a precise simulation of bioeffects in cells is desired.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnologia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24615
dc.identifier.issn0031-9155
dc.identifier.officialurlhttp://iopscience.iop.org/0031-9155/48/11/311
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50975
dc.issue.number11
dc.journal.titlePhysics in Medicine and Biology
dc.language.isoeng
dc.page.final1659
dc.page.initial1649
dc.publisherIOP Publishing Ltd
dc.relation.projectIDFIT-070000-2002-135
dc.rights.accessRightsrestricted access
dc.subject.cdu537
dc.subject.keywordOrientation
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleA study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure
dc.typejournal article
dc.volume.number48
dcterms.references1) Becache, E., Joly, P., 2001, On the analysis of Berenger’s perfectly matched layers for Maxwell equations INRIA, Report No 4164. 2) Fricke, H., 1925, The electric capacity of suspensions with special reference to blood, J. Gen. Physiol., 9, 137–52. 3) Fuhr, G., Zimmermann, U., Shirley, S.G., 1996, Cell Motion in Time Varying Fields: Principles and Potential in Electromanipulation of Cells, ed. U. Zimmermann, G.A. Neil (Boca Raton, FL: CRC Press) pp 259–328. 4) Gabriel, S., Lau, R.W., Gabriel, C., 1996, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol., 41, 2271–93. 5) Gimsa, J., Wachner, D., 2001, Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells, Biophys. J., 81, 1888–96. 6) Huang, J.P., Yu, K.W., 2002, Dielectric behaviour of oblate spheroidal particles: application to erythrocytes suspensions, Commun. Theor. Phys., 1, 82–7. 7) Jin, J., 1993, The Finite Element Method in Electromagnetics (New York: Wiley). 8) Liu, L.M., Cleary, S.F., 1995, Absorbed energy distribution from radiofrequency electromagnetic radiation in mammalian cell model: effect of membrane-bound water, Bioelectromagnetics, 16, 160–71. 9) Miller, R.D., Jones, T.B., 1993, Electro orientation of ellipsoidal erythrocytes, Biophys. J., 64, 1588–95. 10) Morse, P.M., Feshbach, H., 1953, Methods of Theoretical Physics (New York: McGraw-Hill). 11) Sebastián, J.L., Muñoz, S., Sancho, M., Miranda, J.M., 2001, Analysis of the influence of the cell geometry orientation and cell proximity effects on the electric field distribution from direct RF exposure, Phys. Med. Biol., 46, 213–25. 12) Thuery, J., 1992, Microwaves: Industrial, Scientific and Medical Applications, ed. Edward, H. Grant (Artech House).
dspace.entity.typePublication
relation.isAuthorOfPublication921de6b9-d035-46c5-8c6e-9650962c04af
relation.isAuthorOfPublication53e43c76-7bce-46fd-9520-0edb4620c996
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication.latestForDiscovery921de6b9-d035-46c5-8c6e-9650962c04af

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MirandaJM96.pdf
Size:
219.64 KB
Format:
Adobe Portable Document Format

Collections