Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The double scaling limit method in the Toda hierarchy

dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T11:02:32Z
dc.date.available2023-06-20T11:02:32Z
dc.date.issued2008-08-22
dc.description©IOP Publishing Ltd. The authors wish to thank the Spanish Ministerio de Educación y Ciencia (research project FIS2005-00319) and the European Science Foundation (MISGAM programme) for their support.
dc.description.abstractCritical points of semiclassical expansions of solutions to the dispersionful Toda hierarchy are considered and a double scaling limit method of regularization is formulated. The analogues of the critical points characterized by the strong conditions in the Hermitian matrix model are analysed and the property of doubling of equations is proved. A wide family of sets of critical points is introduced and the corresponding double scaling limit expansions are discussed.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministerio de Educación y Ciencia
dc.description.sponsorshipEuropean Science Foundation (MISGAM programme)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34275
dc.identifier.doi10.1088/1751-8113/41/33/335202
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1751-8113/41/33/335202
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/0804.3498
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51635
dc.issue.number33
dc.journal.titleJournal of physics A: Mathematical and Theoretical
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDFIS2005-00319
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordMatrix models
dc.subject.keywordIntegrable hierarchies
dc.subject.keywordQuantum-gravity
dc.subject.keywordUniversality
dc.subject.keywordEquations
dc.subject.keywordStrings
dc.subject.keyword1st
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleThe double scaling limit method in the Toda hierarchy
dc.typejournal article
dc.volume.number41
dcterms.references[1] L. Martínez Alonso and E. Medina, J. Phys. A: Math. Gen. 40, 14223 (2007) [2] K. Takasaki and T. Takebe, Rev. Math. Phys. 7, 743 (1995) [3] E. Brezin and V. Kazakov, Phys. Lett. B 236, 144 (1990). [4] M. Douglas and S. Shenker, Nuc. Phys. B 335, 635 (1990). [5] D. Gross and A. Migdal,Phys. Rev. Lett. 64, 127 (1990) [6] P. Di Francesco, P. Ginsparg and Z. Zinn-Justin, Phys. Rept. 254,1 (1995) [7] A. S. Fokas, A. R. Its and A. V. Kitaev, Comm. Math. Phys. 147 , 395 (1992) [8] P. M. Bleher and A. R. Its , Ann. Math. 150 , 185 (1999) [9] P. M. Bleher and B. Eynard, J. Phys. A: Math. Gen. 36, 2085 (2003) [10] P. M. S. Petropoulos, Phys. Lett. B 247, 363 (1990) [11] C. Bachas and P. M. S. Petropoulos, Phys. Lett. B 261, 402 (1991) [12] T. Hollowood, L. Miramontes, A. Pasquinucci and C: Nappi, Nucl. Phys. B 373, 247 (1992) [13] T. Grava and C. Klein, Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations arXiv:math-ph/0511011. [14] T. Grava and C. Klein, Numerical study of a multiscale expansion of KdV and Camassa- Holm equation arXiv:math-ph/0702038. [15] T. Claeys and T. Grava, Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach arXiv:0801.2326v1 [math-phys]. [16] B. Dubrovin, T. Grava and C. Klein, On universality of critical behaviour in the focusing nonlinear Schõdinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation arXiv:0704.0501[math.AP]15 May 2007. [17] N. A. Kudryashov and M. B. Soukharev, Phys. Lett. A 237, 206 (1998) [18] S-Y. Lee, E. Bettelheim and P. Wiegmann, Physica D 219, 23(2006). [19] R. Teodorescu, P. Wiegmann and A. Zabrodin, Phys. Rev. Lett. 95, 044502 (2005). [20] E. Bettelheim, P. Wiegmann, O. Agam and A. Zabrodin, Phys. Rev. Lett. 95, 244504 (2005). [21] M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, Phys. Rev. Lett. 84, 5106 (2000). [22] P. W. Wiegmann and P. B. Zabrodin, Comm. Math. Phys. 213 , 523 (2000). [23] I. Krichever, M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, Physica D 198, 1 (2004). [24] P. Boutroux, Les transcendents de Painlev´e et le asymptotique des equations différentielles du 2-ordre. Ann. Ecole Norm, 30, 265 (1913). [25] N. Joshi and A. Kitaev, On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107, 253 (2001). [26] M. Adler , P. van Moerbeke and P. Vanhaecke , Moment matrices and multi-component KP, with applications to random matrix theory arXiv:math-ph/06122064. [27] L. Martínez Alonso y E. Medina, Regularization of Hele-Shaw flows, multiscaling expansions and the Painleve I equation arXiv:math-ph/0710.3731
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso16preprint.pdf
Size:
230.07 KB
Format:
Adobe Portable Document Format

Collections