The double scaling limit method in the Toda hierarchy
dc.contributor.author | Martínez Alonso, Luis | |
dc.contributor.author | Medina Reus, Elena | |
dc.date.accessioned | 2023-06-20T11:02:32Z | |
dc.date.available | 2023-06-20T11:02:32Z | |
dc.date.issued | 2008-08-22 | |
dc.description | ©IOP Publishing Ltd. The authors wish to thank the Spanish Ministerio de Educación y Ciencia (research project FIS2005-00319) and the European Science Foundation (MISGAM programme) for their support. | |
dc.description.abstract | Critical points of semiclassical expansions of solutions to the dispersionful Toda hierarchy are considered and a double scaling limit method of regularization is formulated. The analogues of the critical points characterized by the strong conditions in the Hermitian matrix model are analysed and the property of doubling of equations is proved. A wide family of sets of critical points is introduced and the corresponding double scaling limit expansions are discussed. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministerio de Educación y Ciencia | |
dc.description.sponsorship | European Science Foundation (MISGAM programme) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34275 | |
dc.identifier.doi | 10.1088/1751-8113/41/33/335202 | |
dc.identifier.issn | 1751-8113 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/1751-8113/41/33/335202 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/0804.3498 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51635 | |
dc.issue.number | 33 | |
dc.journal.title | Journal of physics A: Mathematical and Theoretical | |
dc.language.iso | eng | |
dc.publisher | IOP Publishing Ltd | |
dc.relation.projectID | FIS2005-00319 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Matrix models | |
dc.subject.keyword | Integrable hierarchies | |
dc.subject.keyword | Quantum-gravity | |
dc.subject.keyword | Universality | |
dc.subject.keyword | Equations | |
dc.subject.keyword | Strings | |
dc.subject.keyword | 1st | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | The double scaling limit method in the Toda hierarchy | |
dc.type | journal article | |
dc.volume.number | 41 | |
dcterms.references | [1] L. Martínez Alonso and E. Medina, J. Phys. A: Math. Gen. 40, 14223 (2007) [2] K. Takasaki and T. Takebe, Rev. Math. Phys. 7, 743 (1995) [3] E. Brezin and V. Kazakov, Phys. Lett. B 236, 144 (1990). [4] M. Douglas and S. Shenker, Nuc. Phys. B 335, 635 (1990). [5] D. Gross and A. Migdal,Phys. Rev. Lett. 64, 127 (1990) [6] P. Di Francesco, P. Ginsparg and Z. Zinn-Justin, Phys. Rept. 254,1 (1995) [7] A. S. Fokas, A. R. Its and A. V. Kitaev, Comm. Math. Phys. 147 , 395 (1992) [8] P. M. Bleher and A. R. Its , Ann. Math. 150 , 185 (1999) [9] P. M. Bleher and B. Eynard, J. Phys. A: Math. Gen. 36, 2085 (2003) [10] P. M. S. Petropoulos, Phys. Lett. B 247, 363 (1990) [11] C. Bachas and P. M. S. Petropoulos, Phys. Lett. B 261, 402 (1991) [12] T. Hollowood, L. Miramontes, A. Pasquinucci and C: Nappi, Nucl. Phys. B 373, 247 (1992) [13] T. Grava and C. Klein, Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations arXiv:math-ph/0511011. [14] T. Grava and C. Klein, Numerical study of a multiscale expansion of KdV and Camassa- Holm equation arXiv:math-ph/0702038. [15] T. Claeys and T. Grava, Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach arXiv:0801.2326v1 [math-phys]. [16] B. Dubrovin, T. Grava and C. Klein, On universality of critical behaviour in the focusing nonlinear Schõdinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation arXiv:0704.0501[math.AP]15 May 2007. [17] N. A. Kudryashov and M. B. Soukharev, Phys. Lett. A 237, 206 (1998) [18] S-Y. Lee, E. Bettelheim and P. Wiegmann, Physica D 219, 23(2006). [19] R. Teodorescu, P. Wiegmann and A. Zabrodin, Phys. Rev. Lett. 95, 044502 (2005). [20] E. Bettelheim, P. Wiegmann, O. Agam and A. Zabrodin, Phys. Rev. Lett. 95, 244504 (2005). [21] M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, Phys. Rev. Lett. 84, 5106 (2000). [22] P. W. Wiegmann and P. B. Zabrodin, Comm. Math. Phys. 213 , 523 (2000). [23] I. Krichever, M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, Physica D 198, 1 (2004). [24] P. Boutroux, Les transcendents de Painlev´e et le asymptotique des equations différentielles du 2-ordre. Ann. Ecole Norm, 30, 265 (1913). [25] N. Joshi and A. Kitaev, On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107, 253 (2001). [26] M. Adler , P. van Moerbeke and P. Vanhaecke , Moment matrices and multi-component KP, with applications to random matrix theory arXiv:math-ph/06122064. [27] L. Martínez Alonso y E. Medina, Regularization of Hele-Shaw flows, multiscaling expansions and the Painleve I equation arXiv:math-ph/0710.3731 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 896aafc0-9740-4609-bc38-829f249a0d2b | |
relation.isAuthorOfPublication.latestForDiscovery | 896aafc0-9740-4609-bc38-829f249a0d2b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- martinezalonso16preprint.pdf
- Size:
- 230.07 KB
- Format:
- Adobe Portable Document Format