Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Forecasting unemployment with Google Trends: age, gender and digital divide

dc.contributor.authorMulero, Rodrigo
dc.contributor.authorGarcía Hiernaux, Alfredo Alejandro
dc.date.accessioned2023-06-22T12:39:02Z
dc.date.available2023-06-22T12:39:02Z
dc.date.issued2022
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractThis paper uses time series of job search queries from Google Trends to predict the unemployment in Spain. Within this framework, we study the effect of the so-called digital divide, by age and gender, from the predictions obtained with the Google Trends tool. Regarding males, our results evidence a digital divide effect in favor of the youngest unemployed. Conversely, the forecasts obtained for female and total unemployment clearly reject such effect. More interestingly, Google Trends queries turn out to be much better predictors for female than male unemployment, being this result robust to age groups. Additionally, the number of good predictors identified from the job search queries is also higher for women, suggesting that they are more likely to expand their job search through different queries.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipCRUE-CSIC agreement with Springer Nature
dc.description.sponsorshipUCM-Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76725
dc.identifier.doi10.1007/s00181-022-02347-w
dc.identifier.issn0377-7332
dc.identifier.officialurlhttps://doi.org/10.1007/s00181-022-02347-w
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s00181-022-02347-w
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72990
dc.journal.titleEmpirical Economics
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDPR75/18-21570
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordDigital divide
dc.subject.keywordForecasting
dc.subject.keywordGender
dc.subject.keywordGoogle Trends
dc.subject.keywordUnemployment
dc.subject.ucmEconomía
dc.subject.unesco53 Ciencias Económicas
dc.titleForecasting unemployment with Google Trends: age, gender and digital divide
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationda39222d-0086-4c3a-9421-032f49579d94
relation.isAuthorOfPublication.latestForDiscoveryda39222d-0086-4c3a-9421-032f49579d94

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00181-022-02347-w.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format

Collections