Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The role of the spectrum in the cyclic behavior of composition operators

dc.contributor.authorGallardo Gutiérrez, Eva Antonia
dc.contributor.authorMontes Rodríguez, Alfonso
dc.date.accessioned2023-06-20T14:28:15Z
dc.date.available2023-06-20T14:28:15Z
dc.date.issued2004
dc.description.abstractA bounded operator T acting on a Hilbert space H is called cyclic if there is a vector x such that the linear span of the orbit {Tnx:n≥0} is dense in H. If the scalar multiples of the orbit are dense, then T is called supercyclic. Finally, if the orbit itself is dense, then T is called hypercyclic. We completely characterize the cyclicity, the supercyclicity and the hypercyclicity of scalar multiples of composition operators, whose symbols are linear fractional maps, acting on weighted Dirichlet spaces. Particular instances of these spaces are the Bergman space, the Hardy space, and the Dirichlet space. Thus, we complete earlier work on cyclicity of linear fractional composition operators on these spaces. In this way, we find exactly the spaces in which these composition operators fail to be cyclic, supercyclic or hypercyclic. Consequently, we answer some open questions posed by Zorboska. In almost all the cases, the cut-off of cyclicity, supercyclicity or hypercyclicity of scalar multiples is determined by the spectrum. We will find that the Dirichlet space plays a critical role in the cut-off.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21109
dc.identifier.isbn978-0-8218-3432-9
dc.identifier.officialurlhttp://www.ams.org/bookstore-getitem/item=MEMO-167-791
dc.identifier.relatedurlhttp://cisne.sim.ucm.es/record=b2108690~S6*spi
dc.identifier.urihttps://hdl.handle.net/20.500.14352/54608
dc.page.total0
dc.publisherAMS
dc.relation.ispartofseriesMemoirs of the American Mathematical Association
dc.rights.accessRightsmetadata only access
dc.subject.cdu517
dc.subject.keywordComposition operators
dc.subject.keywordFunctional equations in the complex domain
dc.subject.keywordIteration and composition of analytic functions
dc.subject.keywordHp-classes
dc.subject.keywordSpectrum
dc.subject.keywordResolvent
dc.subject.keywordCyclic vectors
dc.subject.keywordHypercyclic and chaotic operators
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleThe role of the spectrum in the cyclic behavior of composition operatorsen
dc.typebook
dc.volume.number791
dspace.entity.typePublication
relation.isAuthorOfPublicationf56f1f11-4b62-4a87-80df-8dc195da1201
relation.isAuthorOfPublication.latestForDiscoveryf56f1f11-4b62-4a87-80df-8dc195da1201

Download