Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Classical mechanics and the propagation of the discontinuities of the quantum wave function

dc.contributor.authorLuis Aina, Alfredo
dc.date.accessioned2023-06-20T10:57:55Z
dc.date.available2023-06-20T10:57:55Z
dc.date.issued2003-02-26
dc.description©2003 The American Physical Society
dc.description.abstractGeometrical optics can be regarded both as the short-wavelength approximation of the propagation of electromagnetic waves, and as the exact way in which propagate the surfaces of discontinuity of the classical electromagnetic field. In this work we translate this last idea to quantum mechanics (both relativistic and nonrelativistic). We find that the surfaces of discontinuity of the wave function propagate exactly following the classical trajectories determined by the Hamilton-Jacobi equation. As an example, we consider the lack of diffraction of abrupt wave fronts.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31444
dc.identifier.doi10.1103/PhysRevA.67.024102
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.67.024102
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51524
dc.issue.number2
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final024102_3
dc.page.initial024102_1
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordElectromagnetic missiles
dc.subject.keywordSpherical lens
dc.subject.keywordPotentials
dc.subject.keywordLauncher
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleClassical mechanics and the propagation of the discontinuities of the quantum wave function
dc.typejournal article
dc.volume.number67
dcterms.references[1] L.E. Ballentine, Quantum Mechanics (Prentice Hall, Englewood Cliffs, NJ, 1990). [2] M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1998). [3] R.K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966). [4] E.J. Saletan and A.H. Cromer, Theoretical Mechanics (Wiley, New York, 1971). [5] E.M. Belenov and A.V. Nazarkin, J. Opt. Soc. Am. A 11, 168 (1994). [6] T.T.Wu, J. Appl. Phys. 57, 2370 (1985); T.T.Wu, R.W.P. King, and H.-M. Shen, ibid. 62, 4036 (1987); H.-M. Shen, T.T. Wu, and R.W.P. King, ibid. 63, 5647 (1988); J.M. Myers, H.-M. Shen, and T.T. Wu, ibid. 65, 2604 (1989); M.A. Porras, F. Salazar-Bloise, and L. Va´zquez, Phys. Rev. Lett. 85, 2104 (2000); Opt. Lett. 26, 376 (2001). [7] M. Moshinsky, Phys. Rev. 88, 625 (1952). [8] D. Bohm, Phys. Rev. 85, 166 (1952); N. Rosen, Am. J. Phys. 32, 377 (1964); D.B. Berkowitz and P.D. Skiff, ibid. 40, 1625 (1972); T.C. Wallstrom, Phys. Rev. A 49, 1613 (1994); A.J. Makowski and S. Konkel, ibid. 58, 4975 (1998); A.J. Makowski, Phys. Lett. A 258, 83 (1999); Phys. Rev. A 65, 032103 (2002). [9] H.E. Moses, Phys. Rev. 113, 1670 (1959); J.F. Geurdes, Phys. Rev. E 51, 5151 (1995); J.D. Morgan, J. Phys. A 35, 3317 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2
relation.isAuthorOfPublication.latestForDiscoveryb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luis,A80libre.pdf
Size:
37.67 KB
Format:
Adobe Portable Document Format

Collections