Classical mechanics and the propagation of the discontinuities of the quantum wave function
dc.contributor.author | Luis Aina, Alfredo | |
dc.date.accessioned | 2023-06-20T10:57:55Z | |
dc.date.available | 2023-06-20T10:57:55Z | |
dc.date.issued | 2003-02-26 | |
dc.description | ©2003 The American Physical Society | |
dc.description.abstract | Geometrical optics can be regarded both as the short-wavelength approximation of the propagation of electromagnetic waves, and as the exact way in which propagate the surfaces of discontinuity of the classical electromagnetic field. In this work we translate this last idea to quantum mechanics (both relativistic and nonrelativistic). We find that the surfaces of discontinuity of the wave function propagate exactly following the classical trajectories determined by the Hamilton-Jacobi equation. As an example, we consider the lack of diffraction of abrupt wave fronts. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31444 | |
dc.identifier.doi | 10.1103/PhysRevA.67.024102 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.67.024102 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51524 | |
dc.issue.number | 2 | |
dc.journal.title | Physical review A | |
dc.language.iso | eng | |
dc.page.final | 024102_3 | |
dc.page.initial | 024102_1 | |
dc.publisher | American Physical Society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Electromagnetic missiles | |
dc.subject.keyword | Spherical lens | |
dc.subject.keyword | Potentials | |
dc.subject.keyword | Launcher | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Classical mechanics and the propagation of the discontinuities of the quantum wave function | |
dc.type | journal article | |
dc.volume.number | 67 | |
dcterms.references | [1] L.E. Ballentine, Quantum Mechanics (Prentice Hall, Englewood Cliffs, NJ, 1990). [2] M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1998). [3] R.K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966). [4] E.J. Saletan and A.H. Cromer, Theoretical Mechanics (Wiley, New York, 1971). [5] E.M. Belenov and A.V. Nazarkin, J. Opt. Soc. Am. A 11, 168 (1994). [6] T.T.Wu, J. Appl. Phys. 57, 2370 (1985); T.T.Wu, R.W.P. King, and H.-M. Shen, ibid. 62, 4036 (1987); H.-M. Shen, T.T. Wu, and R.W.P. King, ibid. 63, 5647 (1988); J.M. Myers, H.-M. Shen, and T.T. Wu, ibid. 65, 2604 (1989); M.A. Porras, F. Salazar-Bloise, and L. Va´zquez, Phys. Rev. Lett. 85, 2104 (2000); Opt. Lett. 26, 376 (2001). [7] M. Moshinsky, Phys. Rev. 88, 625 (1952). [8] D. Bohm, Phys. Rev. 85, 166 (1952); N. Rosen, Am. J. Phys. 32, 377 (1964); D.B. Berkowitz and P.D. Skiff, ibid. 40, 1625 (1972); T.C. Wallstrom, Phys. Rev. A 49, 1613 (1994); A.J. Makowski and S. Konkel, ibid. 58, 4975 (1998); A.J. Makowski, Phys. Lett. A 258, 83 (1999); Phys. Rev. A 65, 032103 (2002). [9] H.E. Moses, Phys. Rev. 113, 1670 (1959); J.F. Geurdes, Phys. Rev. E 51, 5151 (1995); J.D. Morgan, J. Phys. A 35, 3317 (2002). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 | |
relation.isAuthorOfPublication.latestForDiscovery | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 |
Download
Original bundle
1 - 1 of 1