Biofilms as poroelastic materials

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Biofilms are bacterial aggregates encased in a self-produced polymeric matrix which attach to moist surfaces and are extremely resistant to chemicals and antibiotics. Recent experiments show that their structure is defined by the interplay of elastic deformations and liquid transport within the biofilm, in response to the cellular activity and the interaction with the surrounding environment. We propose a poroelastic model for elastic deformation and liquid transport in three dimensional biofilms spreading on agar surfaces. The motion of the boundaries can be described by the combined use of Von Kármán type approximations for the agar/biofilm interface and thin film approximations for the biofilm/air interface. Bacterial activity informs the macroscopic continuous model through source terms and residual stresses, either phenomenological or derived from microscopic models. We present a procedure to estimate the structure of such residual stresses, based on a simple cellular automata description of bacterial activity. Inspired by image processing, we show that a filtering strategy effectively smooths out the rough tensors provided by the stochastic cellular automata rules, allowing us to insert them in the macroscopic model without numerical instability.
Unesco subjects
[1] H.C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol. 8 (2010) 623-633. [2] G.E. Kapellos, T.S. Alexiou, A.C. Payatakes, Theoretical modeling of fluid flow in cellular biological media: An overview, Math. Biosci. 225 (2010) 83-93. [3] B. Birnir, A. Carpio, E. Cebrián, P. Vidal, Dynamic energy budget approach to evaluate antibiotic effects on biofilms, Comm. Nonl. Sci. Num. Sim. 54 (2018) 70-83. [4] N. Hoiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Cioufu, Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob. Agents 35 (2010) 322-332. [5] L. Chai, H. Vlamakis, R. Kolter, Extracellular signal regulation of cell differentiation in biofilms, MRS Bulletin 36 (2011) 374-379. [6] A. Seminara, T.E. Angelini, J.N. Wilking, H. Vlamakis, S. Ebrahim, R. Kolter, D.A. Weitz, M.P. Brenner, Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix, Proc. Nat. Acad. Sci. USA 109 (2012) 1116-1121. [7] M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. C¸ Agatay, A.B. Robinson, H. Lu et al, Localized cell death focuses mechanical forces during 3D patterning in a biofilm, Proc. Nat. Acad. Sci. USA 109 (2012) 18891-18896. [8] D.R. Espeso, A. Carpio, B. Einarsson, Differential growth of wrinkled biofilms, Phys. Rev. E 91 (2015) 022710. [9] J. N. Wilking, V. Zaburdaev, M. De Volder, R. Losick, M.P. Brenner, D.A. Weitz, Liquid transport facilitated by channels in Bacillus subtilis biofilms, Proc. Natl. Acad. Sci. USA 110 (2013) 848-852. [10] M. Ben Amar, M. Wu, Patterns in biofilms: From contour undulations to fold focussing, EPL 108 (2014) 38003. [11] M.A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys. 12 (1941) 155-164. [12] S.C. Cowin, Bone poroelasticity, J. Biomechanics 32 (1999) 217-238. [13] S.L. Xue, B. Li, X.Q. Feng, H. Gao, Biochemomechanical poroelastic theory of avascular tumor growth, J. Mech. Phys. Solids 94 (2016) 409-432. [14] R. Sacco, P. Causin, Ch. Lelli, M.T. Raimondi, A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering, Meccanica 52 (2017) 3273-3297. [15] J.R. Rice, M.P. Cleary, Some basic stress diffusion solutions for fluidsaturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys. 14 (1976) 227-241. [16] W.M. Lai, J.S. Hou, V.C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Eng. 113 (1991) 245-258. [17] R. Burridge, J.B. Keller, Poroelasticity equations derived from microstructure, J. Acous. Soc. America 70 (1981) 1140-1146. [18] T. Shaw, M. Winston, C.J. Rupp, I. Klapper, P. Stoodley, Commonality of elastic relaxation times in biofilms, Phys. Rev. Lett. 93 (2004) 098102. [19] G. Chen, D. Gallipoli, A. Ledesma, Chemo-hydro mechanical coupled consolidation for a poroelastic clay buffer in a radioactive waste repository, Trans. Porous Med. 69 (2007) 189-213. [20] A. Ghassemi, A. Diek, Linear chemo-poroelasticity for swelling shales: theory and application, J. Petrol. Sci. Eng. 38 (2003) 199-212. [21] K. Drescher, Y. Shen, B.L. Bassler, H.A. Stone, Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems, Proc. Nat. Acad. Sci. USA 110 (2013) 4345-4350. [22] S.L. Barbour, D.G. Fredlund, Mechanisms of osmotic flow and volume change in clay soils, Can. Geotech. J. 26, (1989) 551-562. [23] K. Alnefaie, Finite element modeling of composite plates with internal delamination, Composite structures 90 (2009) 21-27. [24] Y. Lanir, Biorheology and fluid flux in swelling tissues. I Bicomponent theory for small deformations, including concentration effects, Biorheology 24 (1987) 173-187. [25] G. Oster, C.S. Peskin, Dynamics of osmotic fluid flow, in T.K. Karalis (eds), Mechanics of swelling, NATO ASI Series 64, 731-742 Springer, 1992. [26] B.W. Wood, M. Quintard, S. Whitaker, Calculation of effective diffusivities for biofilms and tissues, Biotech. Bioeng. 77 (2002) 495-516. [27] R. Huang, S.H. Im, Dynamics of wrinkle growth and coarsening in stressed thin films, Phys. Rev. E 74 (2006) 026214. [28] S. Iakunin, L.L. Bonilla, Variational formulation, asymptotic analysis, and finite element simulation of wrinkling phenomena in modified plate equations modeling biofilms growing on agar substrates, Comput. Methods Appl. Mech. Eng. 333 (2018) 257-286. [29] J. Dervaux, P. Ciarletta, M. Ben Amar, Morphogenesis of thin hyperelastic plates: A constitutive theory of biological growth in the Foppl-von Kármán limit, J. Mech. Phys. Solids 57 (2009) 458-471. [30] G. Gioia, M. Ortiz, Delamination of compressed thin films, Adv. Appl. Mech. 33 (1997) 119-188. [31] G. Napoli, S. Turzi, The delamination of a growing elastic sheet with adhesion, Meccanica 52 (2017) 3481-3487. [32] T. Storck, C. Picioreanu, B. Virdis, D.J. Batstone, Variable cell morphology approach for individual-based modeling of microbial communities, Biophys. J. 106 (2014) 2037-2048. [33] S.W. Hermanovic, A simple 2d biofilm model yields a variety of morphological features, Math. Biosci. 169 (2001) 1-14. [34] A. Torres, A. Marquina, J.A. Font, J.M. Ib´a˜nez, Total-variation-based methods for gravitational wave denoising, Phys. Rev. D 90 (2014) 084029. [35] T. Goldstein, S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci. 2 (2009) 323-343.