A Threshold-Based Earthquake Early-Warning System for Offshore Events in Southern Iberia

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
The south of the Iberian Peninsula is a region situated at the convergence of the Eurasian and African plates. This region experiences large earthquakes with a long separation in time, the best known of which is the great 1755 Lisbon Earthquake (i.e., maximum macroseismic intensity, Imax=X), which occurred SW of San Vicente Cape (SW Iberian Peninsula). The high risk of damaging earthquakes has recently lead Carranza et al. (2013) to investigate the feasibility of an EEWS in this region. The analysis of the geometrical situation between the Iberian seismic networks and the San Vicente Cape area led the authors to conclude that a threshold-based approach, which would not require the real-time location of the earthquake, might be the best option for EEWS in SW Iberia. The current work explores this hypothesis, and proposes a new EEW approach that extends the standard P-wave threshold based single station analysis to the whole network. The proposed method allows the real-time estimation of the potential damage at stations that are triggered by P-waves, as well as at the not-triggered ones, giving the advantage of a greater lead-time for the release of alerts. Results of tests made with synthetic data mimicking the scenario of the great 1755 Lisbon Earthquake, and those obtained by applying the new approach to available recordings, indicate that an EEW estimation of the potential damage associated with an event in the San Vicente Cape area can be obtained for a very large portion of the Iberian Peninsula.
© Springer-Verlag. We would like to thank K. Fleming for his comments and suggestions that allowed us to significantly improve the manuscript. K. Fleming kindly improved also the English. This work has been partially supported by MINECO, projects CGL2010-19803-C03-01 and CGL2013-45724-C3-1 and by the INNOCAMPUS project (Ministerio de Economía y Competitividad, Orden CIN/1934/2010), and the REAKT-Strategies and tools for Real Time Earthquake RisK ReducTion FP7 European project funded from the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 282862.
UCM subjects
Unesco subjects
1. Akkar, S. and Bommer, J. J. (2007), Empirical Prediction Equations for Peak Ground Velocity Derived from Strong-Motion Records from Europe and the Middle East. Bulletin of the Seismological Society of America, Vol. 97, No. 2, pp. 511–530, April 2007, doi:10.1785/0120060141. 2. Alcik, H., O. Ozel, N. Apaydin, and M. Erdik M. (2009). A study on warning algorithms for Istanbul earthquake early warning system, Geophys Res. Lett. 36, L00B05, doi:10.1029/2008GL036659. 3. Bindi, D., L Luzi, M Massa, F Pacor. (2010) Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA). Bulletin of earthquake engineering 8 (5), 1209–1230. 4. Böse, M., Ionescu, C., and Wenzel, F. (2007). Earthquake Early Warning for Bucharest, Romania: Novel and revised scaling relations. Geophys Res Lett. 34, L07302. 5. Böse, M., Hauksson, E., Solanki, K., Kanamori, H. and Heaton, T.H. (2009). Real-time testing of the on-site warning algorithm in Southern California and its performance during the July 29, 2008 M w 5.4 Chino Hills earthquake, Geophys Res Lett. 36 doi:10.1029/2008GL036366. 6. Böse, M., Heaton, T. and Hauksson, E. (2012). Rapid estimation of earthquake source and ground-motion parameters for earthquake early warning using data from single three-component broadband or strong-motion sensor, Bull. Seismol. Soc. Am., 102(2), pp. 738–750, doi:10.1785/0120110152. 7. Buforn, E., A. Udías, and M. A. Colombás, (1988a). Seismicity, source mechanisms and seismotectonics of the Azores-Gibraltar plate boundary. Tectonophysics, 152, 89–118. 8. Buforn, E., A. Udías, and J. Mezcua, (1988b). Seismicity and focal mechanisms in south Spain. Bull. Seism. Soc. Am., 78, 2008–2224. 9. Buforn, E., M. Bezzeghoud, A. Udías, and C. Pro, (2004). Seismic sources on the Iberia-African plate boundary and their tectonic implications. Pure Appl. Geophys. 161, 623–646, doi:10.1007/s00024-003-2466-1. 10. Carranza, M., E. Buforn, S. Colombelli, and A. Zollo (2013). Earthquake early warning for southern Iberia: A P wave threshold-based approach, Geophys. Res. Lett., 40, doi:10.1002/grl.50903. 11. Colombelli, S., Amoroso, O., Zollo, A. and Kanamori, H. (2012a). Test of a Threshold-Based Earthquake Early Warning Using Japanese Data, Bull. Seism. Soc. Am., 102, doi:10.1785/0120110149. 12. Colombelli, S., A. Zollo, G. Festa, and H. Kanamori (2012b). Early magnitude and potential damage zone estimates for the great Mw 9 Tohoku-Oki earthquake, Geophys. Res. Lett., 39, L22306, doi:10.1029/2012GL053923. 13. Colombelli, S., Zollo, A. Festa, G. and M. Picozzi (2014). Evidence for a difference in rupture initiation between small and large earthquakes. Nat. Commun. 5:3958 doi:10.1038/ncomms4958. 14. Espinosa-Aranda, J.M., A. Cuellar, A. Garcia, G. Ibarrola, R. Islas, S. Maldonado, and F.H. Rodriguez (2009). Evolution of the Mexican Seismic Alert System (SASMEX), Seism. Res. Lett. 80 694–706. 15. Espinosa-Aranda, J. M., A. Jiménez, G. Ibarrola, F. Alcantar, A. Aguilar, M. Inostrosa, and S. Maldonado (1995). Mexico City Seismic Alert System, Seism. Res. Lett., 66(6), 42–52. 16. Fernández-Ibáñez, F., Soto, J.I., Zoback, M.D. y Morales, J. (2007): Present-day stress field in the Gibraltar Arc (westernMediterranean). J. Geophys. Res, 112:B08404, doi:10.1029/2006JB004683. 17. Font, Y., H. Kao, S. Lallemand, C.-S. Liu, and L.-Y. Chiao (2004). Hypocentral determination offshore eastern Taiwan using the maximum intersection method, Geophys. J. Int. 158, 655–675. 18. Fukao, Y. (1973). Thrust faulting at lithospheric plate boundary. The Portugal earthquake of 1969. Earth Plan. Sci. Lett. 18, 205–216. 19. Grimison, N.L., Chen, W.P., (1988). Source mechanisms of four recent earthquakes along the Azores–Gibraltar plate boundary. Geophysical Journal 92, 391–401. 20. Hayward, N., Watts, A.B., Westbrook, G.K. and Collier, J.S. (1999): A seismic reflection and GLORIA study of compressional deformation in the Gorringe Bank region, eastern North Atlantic. Geophys. J. Int., 138:831–850. 21. Horiuchi, S., H. Negishi, K. Abe, A. Kamimura, and Y. Fujinawa (2005). An automatic processing system for broadcasting system earthquake alarms, Bull. Seism. Soc. Am. 95, 347–353. 22. Iannaccone G, Zollo A, Elia L, Convertito V, Satriano C, Martino C, et al. (2009) A prototype system for earthquake early-warning and alert management in southern Italy. Bull Earthquake Eng, doi:10.1007/s10518-009-9131-8. 23. IGN (1983) Sismicidad del Area Ibero-mogrebí. Publicación 203. Presidencia del Gobierno. 24. Johnston, A. C. (1996). Seismic moment assessment of earthquakes in stable continental regions, III New Madrid 1811–1821, Charleston 1886 and Lisbon 1755. Geophys. J. Int., 126, 314–344. 25. Martínez Solares, J. M. and A. López Arroyo (2004). The great historical 1755 earthquake. Effects and damage in Spain. J. Seismol. 8, 275–294. 26. Morel, J.L. y Meghraoui, M. (1996): Goringe-Alboran-Tell tectonic zone: A transpression system along the Africa-Eurasia plate boundary. Geology, 24:755–758. 27. Kanamori, H. (2005). Real-Time Seismology and Earthquake Damage Mitigation, Annu. Rev. Earth Planet. Sci., 33, 195–214. doi:10.1146/ 28. Peng, H.S., Z.L. Wu, Y.M. Wu, S.M. Yu, D.N. Zhang, and W.H. Huang (2011). Developing a prototype earthquake early warning system in the Beijing Capital Region, Seism. Res. Lett. 82 394–403. 29. Pro, C., E. Buforn, M. Bezzeghoud, and A. Udías, (2013). The earthquakes of 29 July 2003, 12 February 2007, and 17 December 2009 in the region of Cape Saint Vincent (SW Iberia) and their relation with the 1755 Lisbon earthquake. Tectonophysics 583, 16–27, doi:10.1016/j.tecto.2012.10.010. 30. Rydelek, P. and S. Horiuchi (2006). Earth science: is earthquake rupture deterministic? Nature 442. doi:10.1038/nature0496 3. 31. Rydelek, P., C. Wu, and S. Horiuchi (2007). Comment on Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records by Aldo Zollo, Maria Lancieri, and Stefan Nielsen. Geophys. Res. Lett. 34. doi:10.1029/2007GL029387. 32. Satriano, C., A. Lomax, and A. Zollo (2008). Real-Time Evolutionary Earthquake Location for Seismic Early Warning. Bulletin of the Seismological Society of America America 98.3, pp. 14821494. doi:10.1785/0120060159. 33. Satriano, C., Elia, L., Martino, C., Lancieri, M., Zollo, A., and Iannaccone, G. (2011). PRESTo, the earthquake early warning system for southern Italy: concepts, capabilities and future perspectives, Soil Dyn. Earthq. Eng. 31, 137–153. doi:10.1016/j.soildyn.2010.06.008. 34. Stich, D., F. Mancilla, S. Pondrelli, and J. Morales (2007). Source analysis of the February 12th 2007, Mw 6.0 Horseshoe earthquake: Implications for the 1755 Lisbon earthquake. Geophysical Research Letters 34. doi:10.1029/2007GL0300127. 35. Udías, A., López Arroyo, A., Mezcua, J., 1976. Seismotectonic of the Azores-Alboran region. Tectonophysics 31, 259–289. 36. Wald, D. et al. (1999). Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modied Mercalli Intensity in California. In: Earthquake Spectra 15.3, p. 557. doi:10.1193/1.1586058. 37. Wu, Y.M. and L. Zhao (2006). Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophys Res Lett. 33, L16312, doi:10.1029/2006GL026871. 38. Wu, Y.-M. and H. Kanamori (2005). Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P -Waves. Bulletin of the Seismological Society of America America 95.3, pp. 1181–1185. doi:10.1785/0120040193. 39. Wu, Y.-M. and H. Kanamori (2008a). Development of an earthquake early warning system using real-time strong motion signals. Sensors 8, pp. 1–9. 40. Wu, Y.-M and H. Kanamori (2008b). Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake. Earth Planets and Space 60, pp. 155–160. 41. Zollo, A., M. Lancieri, and Nielsen, S. (2006). Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion, Geophys Res Lett. 33, L23312, doi:10.1029/2006GL027795. 42. Zollo, A., M. Lancieri, & Nielsen, S. (2007). Reply to comment by P. Rydelek et al. On Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records. Geophysical Research Letters 34.20, pp. 1215. doi:10.1029/2007GL030560. 43. Zollo, A, O. Amoroso, M. Lancieri, Y.M. Wu and Kanamori, H. (2010). A threshold-based earthquake early warning using dense accelerometer networks, Geophys J Int 183 963–974. 44. Zollo, A., S. Colombelli, L. Elia, A. Emolo, G. Festa, G. Iannaccone, C. Martino, and P. Gasparini (2014). An integrated regional and on-site Earthquake Early Warning System for Southern Italy: concepts, methodologies and performances, In “Early Warning for Geological Disasters—Scientific methods and current practices”, Eds Wenzel & Zschau, Springer.