Production Cross-Section Estimates for Strongly-Interacting Electroweak-Symmetry Breaking Sector Resonances at Particle Colliders

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We are exploring a generic strongly-interacting Electroweak Symmetry Breaking Sector (EWSBS) with the low-energy effective field theory for the four experimentally known particles (W_L^±, Z_L, h) and its dispersion-relation based unitary extension. In this contribution we provide simple estimates for the production cross-section of pairs of the EWSBS bosons and their resonances at proton-proton colliders as well as in a future e^−e^+ (or potentially a μ^−μ^+) collider with a typical few-TeV energy. We examine the simplest production mechanisms, tree-level production through a W (dominant when quantum numbers allow) and the simple effective boson approximation (in which the electroweak bosons are considered as collinear partons of the colliding fermions). We exemplify with custodial isovector and isotensor resonances at 2 TeV, the energy currently being discussed because of a slight excess in the ATLAS 2-jet data. We find it hard, though not unthinkable, to ascribe this excess to one of these W_LW_L rescattering resonances. An isovector resonance could be produced at a rate smaller than, but close to earlier CMS exclusion bounds, depending on the parameters of the effective theory. The ZZ excess is then problematic and requires additional physics (such as an additional scalar resonance). The isotensor one (that would describe all charge combinations) has smaller cross-section.
We warmly thank intense discussions and information exchange with J. J. Sanz Cillero and D. Espriu. We are grateful to U.-G. Meißner for a careful reading of the manuscript. This work is partially supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, by grants UCM:910309, MINECO:FPA2011-27853-C02-01, MINECO:FPA2014-53375-C2-1-P, by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311) and by NSFC (Grant No. 11165005).
Unesco subjects
[1] R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, Phys. Rev. Lett. 114, 221803 (2015) [arXiv:1408.1193 [hep-ph]]; R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 91, 075017 (2015) [arXiv:1502.04841 [hep-ph]]. [2] R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, J. Phys. G 41, 025002 (2014) [arXiv:1308.1629 [hep-ph]]; R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, JHEP 1402, 121 (2014) [arXiv:1311.5993 [hep-ph]]; R. L. Delgado, A. Dobado, M. J. Herrero and J. J. Sanz- Cillero, JHEP 1407, 149 (2014) [arXiv:1404.2866 [hep-ph]]. [3] R. Alonso, I. Brivio, B. Gavela, L. Merlo and S. Rigolin, JHEP 1412, 034 (2014) [arXiv:1409.1589 [hep-ph]]. [4] W. Kilian, T. Ohl, J. Reuter and M. Sekulla, Phys. Rev. D 91, 096007 (2015) [arXiv:1408.6207 [hep-ph]]. [5] G. Buchalla, O. Cata, A. Celis and C. Krause, arXiv:1504.01707 [hep-ph]. [6] J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974) [Phys. Rev. D 11, 972 (1975)]; C. E. Vayonakis, Lett. Nuovo Cim. 17, 383 (1976); M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. 261, 379 (1985); G.J. Gounaris, R. Kogerler and H. Neufeld, Phys. Rev. D 34, 3257 (1986). [7] A. Dobado J. R. Peláez Nucl. Phys. B425, 110 (1994); Phys. Lett. B 329, 469 (1994) (Addendum, ibid, B335, 554 (1994); C. Grosse-Knetter and I.Kuss, Z. Phys. C 66, 95 (1995); H. J. He, Y. P. Kuang and X. Li, Phys. Lett. B 329, 278 (1994). [8] G. Aad et al. [ATLAS Collaboration], arXiv:1506.00962 [hep-ex]. 14 [9] D. Espriu and F. Mescia, Phys. Rev. D 90, 015035 (2014) [arXiv:1403.7386 [hep-ph]]; D. Espriu, F. Mescia and B. Yencho, Phys. Rev. D 88, 055002 (2013) [arXiv:1307.2400 [hep-ph]]; D. Espriu and B. Yencho, Phys. Rev. D 87, 055017 (2013) [arXiv:1212.4158 [hep-ph]]. [10] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988). [11] A. Dobado, M. J. Herrero and T. N. Truong, Phys. Lett. B 235, 134 (1990); A. Dobado and J.R. Peláez, Phys. Rev. D 47, 4883 (1993); Phys. Rev. D 56, 3057 (1997). [12] P. Arnan, D. Espriu and F. Mescia, arXiv:1508.00174 [hep-ph]. [13] V. Khachatryan et al. [CMS Collaboration], JHEP 1408, 173 (2014) [arXiv:1405.1994 [hep-ex]]. [14] S. Dawson, Nucl. Phys. B 249, 42 (1985). [15] A. Dobado and M. J. Herrero, Phys. Lett. B 233, 505 (1989). [16] J. F. Owens, A. Accardi and W.Melnitchouk, Phys. Rev. D 87, 094012 (2013) [arXiv:1212.1702 [hep-ph]]. [17] A. Dobado, M. J. Herrero, J. R. Peláez and E. Ruiz Morales, Phys. Rev. D 62, 055011 (2000) [hep-ph/9912224]. [18] K. A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014). [19] W. J. Marciano, AIP Conf. Proc. 542, 48 (2000) [hep-ph/0003181]. [20] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2014-009, ATLAS-COMCONF- 2014-013; also the CMS Collaboration report CMSPASHIG-14-009. [21] D. Barducci, H. Cai, S. De Curtis, F. J. Llanes-Estrada and S. Moretti, Phys. Rev. D 91, 095013 (2015) [arXiv:1501.01830 [hep-ph]]. [22] J. A. Aguilar-Saavedra, arXiv:1506.06739 [hep-ph]. [23] M. Ahmad et al. [CEPC-SPPC Study Group], CEPC-SPPC Preliminary Conceptual Design Report, IHEP-CEPC-DR-2015-01. [24] A. Gomez Nicola, J. R. Peláez and G. R´ıos, Phys. Rev. D 77, 056006 (2008) [arXiv:0712.2763 [hep-ph]]. [25] K. M. Watson, Phys. Rev. 88, 1163 (1952).