Shear and bulk viscosities of a photon gas at low temperature

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We explore the viscosities of a photon gas by means of the Euler-Heisenberg effective theory and quantum electrodynamics at zero electron chemical potential. We find parametric estimates that show a very large shear viscosity and an extremely small bulk viscosity (reflecting the very weak coupling simultaneously with a very approximate dilatation invariance). The system is of some interest because it exemplifies very neatly the influence of the breaking of scale invariance on the bulk viscosity.
© 2013 American Physical Society. We thank useful conversations with T. Schaefer. This work was supported by Spanish Grants No. FPA2010-16963 and No. FPA2011-27853-C02-01. J.M.T.-R. is funded by Grant No. FP7 PEOPLE-2011-CIG under Contract No. PCIG09-GA-2011-291679.
Unesco subjects
[1] See for example P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007); C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013). [2] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev. Lett. 97, 152303 (2006). [3] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres Rincon, Phys. Rev. D 79, 014002 (2009); 80, 114015 (2009). [4] F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663, 217 (2008). [5] A. Dobado and J. M. Torres-Rincon, Phys. Rev. D 86, 074021 (2012). [6] D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. Lett. 102, 121601 (2009). [7] D. Fernandez-Fraile, Phys. Rev. D 83, 065001 (2011). [8] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 05 (2003) 051; P. B. Arnold, C. Dogan, and G. D. Moore, Phys. Rev. D 74, 085021 (2006). [9] E. Lu and G. D. Moore, Phys. Rev. C 83, 044901 (2011). [10] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres Rincon, Phys. Lett. B 702, 43 (2011). [11] M. Mannarelli, C. Manuel, and L. Tolos, Ann. Phys. (Amsterdam) 336, 12 (2013); arXiv:1201.4006; T.Schaefer and K. Dusling, arXiv:1305.4688. [12] E. Milotti et al., Int. J. Quantum. Inform. 10, 1241002 (2012). [13] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 536, A18 (2011). [14] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936). [15] J. Halter, Phys. Lett. B 316, 155 (1993). [16] Y. Liang and A. Czarnecki, Can. J. Phys. 90, 11 (2012). [17] R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950). [18] J. M. Torres-Rincon, Ph.D. Dissertation, Universidad Complutense de Madrid (Spain), 2012, arXiv:1205.0782. [19] M. H. Thoma, Europhys. Lett. 52, 498 (2000). [20] J. O. Andersen, Phys. Rev. D 65, 025014 (2001). [21] S. Jeon and L. G. Yaffe, Phys. Rev. D 53, 5799 (1996); P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906 (2011). [22] J. F. Nieves, P. B. Pal, and D. G. Unger, Phys. Rev. D 28, 908 (1983); O.K. Kalashnikov, Phys. Scr. 58, 310 (1998). [23] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, England, 2006). [24] E. M. Lifschitz and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz Course of Theoretical Physics Vol. 9 (Pergamon, Oxford, 1980). [25] M. I. Gorenstein and S.-N. Yang, Phys. Rev. D 52, 5206 (1995). [26] A. S. Khvorostukhin, V. D. Toneev, and D. N. Voskresensky, Phys. Rev. C 83, 035204 (2011). [27] C. Manuel, A. Dobado, and F. J. Llanes-Estrada, J. High Energy Phys. 09 (2005) 076. [28] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (IE-Wiley, New York, 1972).