Femtosecond laser induced damage characterization of transmission volume phase gratings

Thumbnail Image
Full text at PDC
Publication Date
Hernández Garay, María de la Paz
Izquierdo, J. G.
Vaveliuk, Pablo
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
A procedure to characterize the induced damage and the incubation effects in volume transmission gratings under femtosecond laser pulse train illumination is presented. It was also developed a formalism that explains the damage processes. Our proposal was employed on glass gratings to show the effectiveness of the method and its potential to design transmission gratings with enhanced laser induced damage threshold. This procedure is able to be extended to any transmission grating composed by chemically non-uniform material, opening up new perspectives to femtosecond laser pulse shaping.
© 2014 AIP Publishing LLC. We thank J. A. Rodrigo and T. Alieva for valuable discussions and advice. We thank the financial support from the Spanish Ministerio de Economía y Competividad under Projects TEC 2011-23629, CTQ2008-02578/BQU, and CTQ2012-37404-C02-01 and Consolider program SAUUL CSD2007-00013 and from Conselho Nacional de Desenvolvimento. The facilities provided by the Center of Ultrashort Lasers at Madrid Complutense University are gratefully acknowledged.
1 J. Neauport, E. Lavastre, G. Raz_e, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, Opt. Express 15, 12508 (2007). 2 L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, Appl. Opt. 50, C178 (2011). 3 S. Hocquet, J. Neauport, and N. Bonod, Appl. Phys. Lett. 99, 061101 (2011). 4 J. Neauport, N. Bonod, S. Hocquet, S. Palmier, and G. Dupuy, Opt. Express 18, 23776 (2010). 5 F. del Monte, O. Martínez-Matos, J. A. Rodrigo, M. L. Calvo, and P. Cheben, Adv. Mater. 18, 2014 (2006). 6 O. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, Appl. Phys. Lett. 91, 141115 (2007). 7 M. L. Calvo and P. Cheben, J. Opt. A: Pure Appl. Opt. 11, 024009 (2009). 8 O. Martínez-Matos, J. A. Rodrigo, M. L. Calvo, and P. Cheben, Opt. Lett. 34, 485 (2009). 9 A. V. Velasco, M. L. Calvo, and P. Cheben, J. Appl. Phys. 113, 033101 (2013). 10 O. Martínez-Matos, J. A. Rodrigo, M. P. Hernández-Garay, J. G. Izquierdo, R. Weigand, M. L. Calvo, P. Cheben, P. Vaveliuk, and L. Bañares, Opt. Lett. 35, 652 (2010). 11 M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Bañnares, Opt. Express 19, 1516 (2011). 12 H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969). 13 A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, Opt. Lett. 33, 651 (2008). 14 N. Bloenbergen, IEEE J. Quantum Electron. 10, 375 (1974). 15 Y. Jee, M. F. Becker, and R. M. Walser, J. Opt. Soc. Am. B 5, 648 (1988). 16 S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, Phys. Chem. Chem. Phys. 10, 6174 (2008). 17 J. Bonse, S. M. Wiggins, J. Solis, H. Sturm, L. Urech, A. Wokaun, and T. Lippert, J. Phys.: Conf. Ser. 59, 105–111 (2007). 18 L. M. Machado, R. E. Samad, W. de Rossi, and N. D. V. Junior, Opt. Express 20, 4114 (2012). 19 S. Baudach, J. Bonse, and W. Kautek, Appl. Phys. A 69, S395 (1999).