The Smith Cloud and its dark matter halo: survival of a Galactic disc passage

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Oxford Univ Press
Google Scholar
Research Projects
Organizational Units
Journal Issue
Under conservative assumptions about the Galaxy, the derived velocity of the Smith Cloud indicates that it will have undergone at least one passage of the Galactic disc. Using hydrodynamic simulations, we examine the present-day structure of the Smith Cloud and find that a dark matter supported cloud is able to reproduce the observed present-day neutral hydrogen mass, column density distribution and morphology. In this case, the dark matter halo becomes elongated owing to the tidal interaction with the Galactic disc. Clouds in models neglecting dark matter confinement are destroyed upon disc passage, unless the initial cloud mass is well in excess of what is observed today. We then determine integrated flux upper limits to the gamma-ray emission around such a hypothesized dark matter core in the Smith Cloud. No statistically significant core or extended gamma-ray emission are detected down to a 95 per cent confidence level upper limit of 1.4 x 10(-10) ph cm(-2) s(-1) in the 1-300 GeV energy range. For the derived distance of 12.4 kpc, the Fermi upper limits set the first tentative constraints on the dark matter cross-sections annihilating into tau(+)tau(-) and b (b) over bar for a high-velocity cloud.
© 2013 RAS. This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly noticies of the Royal Astronomical Society, following peer review. The version of record The Smith Cloud and its dark matter halo: survival of a Galactic disc passage, is available online at: N.M. acknowledges support from the Spanish taxpayers through a Ramón y Cajal fellowship and the Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. All numerical simulations were conducted on the RCC Midway cluster at the University of Chicago. OA is grateful to Doug Rudd for making the use of the Midway cluster a smooth experience. We thank Tarek Hassan for his help with general technicalities.
Unesco subjects
Abdo A. A. et al. 2010, ApJ, 712, 147 Ackermann M. et al. 2010, JCAP, 05, 025 Agertz, O., Kravtsov, A. V., Leitner, S. N., & Gnedin, N. Y. 2013, ApJ, 770, 25 Baltz E. A. et al. 2008, JCAP, 7, 13 Belokurov V. et al. 2007, ApJ, 654, 897 Blitz L., Spergel D. N., Teuben P. J., Hartmann D., Burton W. B. 1999, ApJ, 514, 818 Boothroyd, A. I., Blagrave, K., Lockman, F. J., Martin, P. G., Pinheiro Goncalves, D., & Srikanth, S. 2011, A&A, 536, A81 Bregman J. N. 1980, ApJ, 236, 577 Charbonnier, A., et al. 2011, MNRAS, 418, 1526 Charbonnier A., Combet C., Maurin D. 2012, Comp. Phys. Comm., 183, 656 Chynoweth, K. M., Langston, G. I., Yun, M. S., Lockman, F. J., Rubin, K. H. R., & Scoles, S. A. 2008, AJ, 135, 1983 Chynoweth, K. M., Langton, G. I., Holley-Bockelmann, K. 2011, AJ, 141, 9 CTA Consortium 2013, Astrop. Phys., 43, 3 Diemand, J., Kuhlen, M., Madau, P. 2007, ApJ, 667, 859 Doro M. et al. 2013, Astrop. Phys., 43, 189 Einasto J. 1965, Trudy Inst. Astroz. Alma-Ata, 51, 87 Fornengo N., Pieri L., Scopel S. 2004, Phys. Rev. D, 70, 103529 Gaensler, B. M., Madsen, G. J., Chatterjee, S., & Mao, S. A. 2008, PASA, 25, 184 de Gouveia Dal Pino, E. M., Melioli, C., D'Ercole, A., Brighenti, F., & Raga, A. C. 2009, RMxAC, 36, 17 Grcevich, J., & Putman, M. E. 2009, ApJ, 696, 385 Kalberla, P. M. W., & Dedes, L. 2008, A&A, 487, 951 Klypin A., Kravtsov A. V., Valenzuela O., Prada F. 1999, ApJ, 522, 82 Lockman F. J., Benjamin R. A., Heroux A. J., Langston G. I. 2008, ApJ, 679, L2 Maloney P. R., Putman M. E. 2003, ApJ, 589, 270 Mateo M. 1998, ARA&A, 36, 435 Mirabal N. 2013, MNRAS, 432, 71 Moore B. et al. 1999, ApJ, 524, L19 Moore, B., Kazantzidis, S., Diemand, J., & Stadel, J. 2004, MNRAS, 354, 522 Natarajan, A., Peterson, J. B., Voytek, T. C., Spekkens, K., Mason, B., Aguirre, J., & Willman, B. 2013, PhRvD, 88, 083535 Navarro J. F., Frenk C. S., White S. D. M. 1996, ApJ, 462, 563 Navarro J. F. et al. 2010, MNRAS, 402, 21 Nichols M., Bland-Hawthorn J. 2009, ApJ, 707, 1642 Nolan P. L. et al. 2011, ApJS, 199, 31 Oort J. H. 1970, A&A, 7, 381 Plockinger, S., & Hensler, G. 2012, A&A, 547, A43 Putman, M. E., Bland-Hawthorn, J., Veilleux, S., Gibson, B. K., Freeman, K. C., & Maloney, P. R. 2003, ApJ, 597, 948 Putman, M. E. 2004, ASSL, 312, 101 Putman, M. E., Saul, D. R., & Mets, E. 2011, MNRAS, 418, 1575 Putman, M. E., Peek, J. E. G., & Joung, M. R. 2012, ARA&A, 50, 491 Quilis, V., Moore, B. 2001, ApJ, 555, L95 Saul, D. R., et al. 2012, ApJ, 758, 44 Springel V. et al. MNRAS, 391, 1685 Smith G. P. 1963, Bull. Astron. Inst. Neth., 17, 203 Teyssier, R. 2002, A&A, 385, 337 The Fermi-LAT Collaboration, et al. 2013, arXiv, arXiv:1310.0828 Wakker B. P., van Woerden H. 1997, ARA&A, 35, 217 Wakker, B. P., York, D. G., Wilhelm, R., Barentine, J. C., Richter, P., Beers, T. C., Ivezic, Z., & Howk, J. C. 2008, ApJ, 672, 298 Weinberg D. H., Bullock J. S., Governato F., Kuzio de Naray R., Peter A. H. G. 2013, preprint (arXiv:1306.0913) Willman B. et al. 2005, ApJ, 626, L85 Wolre M. G., McKee C. F., Hollenback D., Tielens A. G. G. M. 1995, ApJ, 453, 673