## Publication: Chiral symmetry restoration and scalar-pseudoscalar partners in QCD

Loading...

##### Official URL

##### Full text at PDC

##### Publication Date

2013-10-11

##### Advisors (or tutors)

##### Editors

##### Journal Title

##### Journal ISSN

##### Volume Title

##### Publisher

Amer Physical Soc

##### Abstract

We investigate the charged-neutral difference in the pion self-energy at finite temperature T. Within chiral perturbation theory (ChPT) we extend a previous analysis performed in the chiral and soft pion limits. Our analysis with physical pion masses leads to additional non-negligible contributions for temperatures typical of a meson gas, including a momentum-dependent function for the self-energy. In addition, a nonzero imaginary part arises to leading order, which we define consistently in the Coulomb gauge and comes from an infrared enhanced contribution due to thermal bath photons. For distributions typical of a heavy-ion meson gas, the charged and neutral pion masses and their difference depend on temperature through slowly increasing functions. Chiral symmetry restoration turns out to be ultimately responsible for keeping the charged-neutral mass difference smooth and compatible with the observed charged and neutral pion spectra. We study also phenomenological effects related to the thermal electromagnetic damping, which gives rise to corrections for transport coefficients and distinguishes between neutral and charged mean free times. An important part of the analysis is the connection with chiral symmetry restoration through the relation of the pion mass difference with the vector-axial spectral function difference, which holds at T = 0 due to a sum rule in the chiral and soft pion limits. We analyze the modifications of that sum rule including nonzero pion masses and temperature, up to O(T-2) similar to O(M-pi(2)). Both effects produce terms making the pion mass difference grow against chiral-restoring decreasing contributions. Finally, we analyze the corrections to the previous ChPT and sum rule results within the resonance saturation framework at finite temperature, including explicitly p and a(1) exchanges. Our results show that the ChPT result is robust at low and intermediate temperatures, the leading resonance corrections within this framework being O((TM pi 2)-M-2/M-R(2)) with M-R the involved resonance masses.

##### Description

© 2013 American Physical Society.
Useful comments from F. Karsch, S. Mukherjee, and D. Cabrera are acknowledged. This work is partially supported by the EU FP7 HadronPhysics3 project, the Spanish project FPA2011-27853-C02-02, and FPI Programme (BES-2009-013672, R. T. A), and by the German DFG (SFB/TR 16, J. R. E.).

##### UCM subjects

##### Unesco subjects

##### Keywords

##### Citation

[1] Y. Aoki, S. Borsányi, S. Dürr, Z. Fodor, S. D. Katz, S. Krieg, and K. Szabo, J. High Energy Phys. 06 (2009) 088.
[2] A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).
[3] S. Ejiri, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt, W. Soeldner, and W. Unger, Phys. Rev. D 80, 094505 (2009).
[4] T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. 55, 158 (1985).
[5] R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1 (2002).
[6] J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012), and references therein.
[7] E. V. Shuryak, Phys. Rep. 115, 151 (1984); 264, 357 (1996).
[8] D. J. Broadhurst, Nucl. Phys. B85, 189 (1975).
[9] M. Bochicchio, L. Maiani, G. Martinelli, G. Rossi, and M. Testa, Nucl. Phys. B262, 331 (1985).
[10] Ph. Boucaud, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, and J. Rodríguez-Quintero, Phys. Rev. D 81, 094504 (2010).
[11] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).
[12] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987).
[13] G. Chanfray and M. Ericson, Eur. Phys. J. A 16, 291 (2003).
[14] A. Gomez Nicola and R. Torres Andres, Phys. Rev. D 83, 076005 (2011).
[15] A. Gómez Nicola, J. R. Peláez, and J. Ruiz de Elvira, Phys. Rev. D 87, 016001 (2013).
[16] A. Gomez Nicola, J. R. Peláez, and J. Ruiz de Elvira, Phys. Rev. D 82, 074012 (2010).
[17] D. Toublan, Phys. Rev. D 56, 5629 (1997).
[18] M. Cheng et al., Eur. Phys. J. C 71, 1 (2011).
[19] F. Karsch and E. Laermann, in Quark Gluon Plasma, edited by R. C. Hwa (World Scientific, Singapore, 2004), pp. 1–59.
[20] A. Bazavov et al., Phys. Rev. D 80, 014504 (2009).
[21] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990); A. Dobado and J. R. Pelaez, Phys. Rev. D 56, 3057 (1997).
[22] A. Gomez Nicola, F. J. Llanes-Estrada, and J. R. Pelaez, Phys. Lett. B 550, 55 (2002).
[23] A. Dobado, A. Gomez Nicola, F. J. Llanes-Estrada, and J. R. Pelaez, Phys. Rev. C 66, 055201 (2002).
[24] D. Fernandez-Fraile, A. Gomez Nicola, and E. T. Herruzo, Phys. Rev. D 76, 085020 (2007).
[25] A. Gomez Nicola, J. R. Pelaez, A. Dobado, and F. J. Llanes-Estrada, AIP Conf. Proc. 660, 156 (2003).
[26] A. V. Smilga and J. J. M. Verbaarschot, Phys. Rev. D 54, 1087 (1996).
[27] F. Karsch, K. Redlich, and A. Tawfik, Eur. Phys. J. C 29, 549 (2003).
[28] P. Huovinen and P. Petreczky, Nucl. Phys. A837, 26 (2010).
[29] A. Andronic, P. Braun-Munzinger, and J. Stachel, Phys. Lett. B 673, 142 (2009); 678, 516(E) (2009).
[30] A. Andronic, P. Braun-Munzinger, J. Stachel, and M. Winn, Phys. Lett. B 718, 80 (2012).
[31] A. Gómez Nicola, J. Ruiz de Elvira, and R. Torres Andres (unpublished).