Investigating evidence for different black hole accretion modes since redshift z ∼ 1

Thumbnail Image
Full text at PDC
Publication Date
Georgakakis, A.
Fanidakis, N.
Salvato, M.
Aird, J.
Messias, H.
Lotz, J. M.
Barro, Guillermo
Hsu, Li-Ting
Nandra, K.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Chandra data in the COSMOS, AEGIS-XD and 4 Ms Chandra Deep Field South are combined with multiwavelength photometry available in those fields to determine the rest-frame U − V versus V − J colours of X-ray AGN hosts in the redshift intervals 0.1 < z < 0.6 (mean z¯=0.40) and 0.6 < z < 1.2 (mean z¯=0.85). This combination of colours provides an effective and least model-dependent means of separating quiescent from star-forming, including dust reddened, galaxies. Morphological information emphasizes differences between AGN populations split by their U − V versus V − J colours. AGN in quiescent galaxies consist almost exclusively of bulges, while star-forming hosts are equally split between early- and late-type hosts. The position of AGN hosts on the U − V versusV − J diagram is then used to set limits on the accretion density of the Universe associated with evolved and star-forming systems independent of dust induced biases. It is found that most of the black hole growth at z≈ 0.40 and 0.85 is associated with star-forming hosts. Nevertheless, a non-negligible fraction of the X-ray luminosity density, about 15–20 per cent, at both z¯=0.40 and 0.85, is taking place in galaxies in the quiescent region of the U − V versus V − J diagram. For the low-redshift sub-sample, 0.1 < z < 0.6, we also find tentative evidence, significant at the 2σ level, that AGN split by their U − V and V − J colours have different Eddington ratio distributions. AGN in blue star-forming hosts dominate at relatively high Eddington ratios. In contrast, AGN in red quiescent hosts become increasingly important as a fraction of the total population towards low Eddington ratios. At higher redshift, z > 0.6, such differences are significant at the 2σ level only for sources with Eddington ratios ≳ 10^− 3. These findings are consistent with scenarios in which diverse accretion modes are responsible for the build-up of supermassive black holes at the centres of galaxies. We compare these results with the predictions of theGALFORM semi-analytic model for the cosmological evolution of AGN and galaxies. This model postulates two black hole fuelling modes, the first is linked to star formation events and the second takes place in passive galaxies. GALFORM predicts that a substantial fraction of the black hole growth at z < 1 is associated with quiescent galaxies, in apparent conflict with the observations. Relaxing the strong assumption of the model that passive AGN hosts have zero star formation rate could bring those predictions in better agreement with the data.
© 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. The authors wish to thank the referee, M. Brusa, for providing constructive comments and suggestions. PGP-G acknowledges support from the Spanish Programa Nacional de Astronomía y Astrofísica under grant AYA2012-31277. This work has made use of the Rainbow Cosmological Surveys Database, which is operated by the Universidad Complutense de Madrid (UCM), partnered with the University of California Observatories at Santa Cruz (UCO/Lick, UCSC). Funding for the DEEP2 Galaxy Redshift Survey has been provided in part by NSF grants AST95-09298, AST-0071048, AST-0071198, AST-0507428 and AST-0507483 as well as NASA LTSA grant NNG04GC89G. Funding for the DEEP3 Galaxy Redshift Survey has been provided by NSF grants AST-0808133, AST-0807630 and AST-0806732. This work benefited from the THALES project 383549 that is jointly funded by the European Union and the Greek Government in the framework of the programme 'Education and lifelong learning'.
Unesco subjects
Abraham R. G., van den Bergh S., Nair P., 2003, ApJ, 588, 218 Aird J., Coil A. L., Moustakas J., Blanton M. R., Burles S. M., Cool R. J., Eisenstein D. J., Smith M. S. M., Wong K. C., Zhu G., 2012, ApJ, 746, 90 Aird J., et al., 2010, MNRAS, 401, 2531 Allevato V., et al., 2011, ArXiv 1105.0520 —, 2012, ApJ, 758, 47 Barro G., Pérez González P. G., Gallego J., Ashby M. L. N., Kajisawa M., Miyazaki S., Villar V., Yamada T., Zamorano J., 2011a, ApJS, 193, 13 —, 2011b, ApJS, 193, 30 Behroozi P. S., Wechsler R. H., Conroy C., 2013, ApJ, 762, L31 Bessell M. S., 1990, PASP, 102, 1181 Blanton M. R., Roweis S., 2007, AJ, 133, 734 Bongiorno A., et al., 2012, MNRAS, 427, 3103 Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645 Brusa M., et al., 2009, A&A, 507, 1277 —, 2010, ApJ, 716, 348 Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 Bundy K., Ellis R. S., Conselice C. J., Taylor J. E., Cooper M. C., Willmer C. N. A., Weiner B. J., Coil A. L., Noeske K. G., Eisenhardt P. R. M., 2006, ApJ, 651, 120 Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koornneef J., Storchi-Bergmann T., 2000, ApJ, 533, 682 Capak P., et al., 2007, ApJS, 172, 99 Cardamone C. N., Urry C. M., Schawinski K., Treister E., Brammer G., Gawiser E., 2010a, ApJ, 721, L38 —, 2010b, ApJ, 721, L38 Cisternas M., et al., 2011, ApJ, 726, 57 Coil A. L., Georgakakis A., Newman J. A., Cooper M. C., Croton D., Davis M., Koo D. C., Laird E. S., Nandra K., Weiner B. J., Willmer C. N. A., Yan R., 2009, ApJ, 701, 1484 Cooper M. C., et al., 2011, ApJS, 193, 14 —, 2012, MNRAS, 419, 3018 Elvis M., et al., 2009, ApJS, 184, 158 Fanidakis N., Baugh C. M., Benson A. J., Bower R. G., Cole S., Done C., Frenk C. S., Hickox R. C., Lacey C., Del P. Lagos C., 2012, MNRAS, 419, 2797 Fanidakis N., et al., 2013, ArXiv e-prints 1305.2200 Fioc M., Rocca-Volmerange B., 1997, A&A, 326, 950 Fukugita M., Hogan C. J., Peebles P. J. E., 1998, ApJ, 503, 518 Georgakakis A., Rowan-Robinson M., Babbedge T. S. R., Georgantopoulos I., 2007, MNRAS, 377, 203 Georgakakis A., et al., 2009, MNRAS, 397, 623 —, 2011, MNRAS, 418, 2590 Giavalisco M., et al., 2004, ApJ, 600, L93 Hickox R. C., et al., 2009, ApJ, 696, 891 Hopkins A. M., Beacom J. F., 2006, ApJ, 651, 142 Hutchings J. B., Frenette D., Hanisch R., Mo J., Dumont P. J., Redding D. C., Neff S. G., 2002, AJ, 123, 2936 Kauffmann G., Heckman T. M., 2009, MNRAS, 397, 135 Kelly B. C., Merloni A., 2012, Advances in Astronomy, 2012 Kocevski D. D., et al., 2012, ApJ, 744, 148 Koekomoer A. M., et al., 2007, ApJS, 172, 196 Kormendy J., Ho L. C., 2013, ARA&A, 51, 511 Laird E. S., et al., 2009, ApJS, 180, 102 Leauthaud A., et al., 2012, ApJ, 744, 159 Lilly S. J., et al., 2009, ApJS, 184, 218 Lin H., Yee H. K. C., Carlberg R. G., Morris S. L., Sawicki M., Patton D. R., Wirth G., Shepherd C. W., 1999, ApJ, 518, 533 Lotz J. M., Primack J., Madau P., 2004, AJ, 128, 163 Lotz J. M., et al., 2008, ApJ, 672, 177 Lusso E., et al., 2012, MNRAS, 425, 623 Magorrian J., Tremaine S., Richstone D., Bender R., Bower G., Dressler A., Faber S. M., Gebhardt K., Green R., Grillmair C., Kormendy J., Lauer T., 1998, AJ, 115, 2285 Marconi A., Hunt L. K., 2003, ApJ, 589, L21 Marconi A., Risaliti G., Gilli R., Hunt L. K., Maiolino R., Salvati M., 2004, MNRAS, 351, 169 McCracken H. J., et al., 2010, ApJ, 708, 202 Messias H., 2011, PhD thesis, University of Lisbon Mignoli M., et al., 2004, A&A, 418, 827 Morrison R., McCammon D., 1983, ApJ, 270, 119 Moster B. P., Somerville R. S., Maulbetsch C., van den Bosch F. C., Macciò A. V., Naab T., Oser L., 2010, ApJ, 710, 903 Mountrichas G., Georgakakis A., 2012, MNRAS, 420, 514 Mountrichas G., Georgakakis A., Finoguenov A., Erfanianfar G., Cooper M. C., Coil A. L., Laird E. S., Nandra K., Newman J. A., 2013, MNRAS, 430, 661 Mullaney J. R., et al., 2012, MNRAS, 419, 95 Nandra K., Pounds K. A., 1994, MNRAS, 268, 405 Newman J. A., et al., 2012, ArXiv e-prints, 1203.3192 Oohama N., Okamura S., Fukugita M., Yasuda N., Nakamura O., 2009, ApJ, 705, 245 Patel S. G., Holden B. P., Kelson D. D., Franx M., van der Wel A., Illingworth G. D., 2012, ApJ, 748, L27 Pérez González P. G., et al., 2008, ApJ, 675, 234 Rosario D. J., et al., 2012, A&A, 545, A45 —, 2013, ArXiv e-prints 1302.1202 Rovilos E., et al., 2012, A&A, 546, A58 Salvato M., et al., 2011, ApJ, 742, 61 Sanders D. B., et al., 2007, ApJS, 172, 86 Santini P., et al., 2012, A&A, 540, A109 Schmidt M., 1968, ApJ, 151, 393 Shen Y., 2013, Bulletin of the Astronomical Society of India, 41, 61 Sutherland W., Saunders W., 1992, MNRAS, 259, 413 Tasca L. A. M., et al., 2009, A&A, 503, 379 Trump J. R., Hsu A. D., Fang J. J., Faber S. M., Koo D. C., Kocevski D. D., 2013, ApJ, 763, 133 Trump J. R., et al., 2009, ApJ, 696, 1195 Williams R. J., Quadri R. F., Franx M., van Dokkum P., Labbé I., 2009, ApJ, 691, 1879 Willmer C. N. A., et al., 2006, ApJ, 647, 853 Xue Y. Q., et al., 2011, ApJS, 195, 10