Local complementation and the extension of bilinear mappings

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Cambridge Phylosophical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study different aspects of the connections between local theory of Banach spaces and the problem of the extension of bilinear forms from subspaces of Banach spaces. Among other results, we prove that if X is not a Hilbert space then one may find a subspace of X for which there is no Aron-Berner extension. We also obtain that the extension of bilinear forms from all the subspaces of a given X forces such X to contain no uniform copies of l(p)(n) for p is an element of [1, 2). In particular, X must have type 2 - epsilon for every epsilon > 0. Also, we show that the bilinear version of the Lindenstrauss-Pelczynski and Johnson-Zippin theorems fail. We will then consider the notion of locally alpha-complemented subspace for a reasonable tensor norm alpha, and study the connections between alpha-local complementation and the extendability of alpha* -integral operators.
Unesco subjects
F. ALBIAC and N. J. KALTON. Topics in Banach Space Theory. of Graduate Texts in Mathematics, vol. 233 (Springer, 2006). D. E. ALSPACH. Quotients of c0 are almost isometric to subspaces of c0. Proc. Amer. Math. Soc. 76 (1979), 285–289. R.ARON and P. BERNER. A Hahn–Banach extension theorem for analytic mappings. Bull. Soc.Math. France 106 (1978), 3–24. G. BENNETT, L. E. DOR, V. GOODMAN and W. B. JOHNSON. On uncomplemented subspaces of L p, 1 < p < 2 Israel J. Math. 26 no. 2 (1977), 178–187. J. BOURGAIN. A counterexample to a complementation problem, Comp. Math. 43 (1981), 133–144. F. CABELLO SÁNCHEZ and J. M. F. CASTILLO. Uniform boundedness and twisted sums of Banach spaces Houston J. Math. 30 (2004), 523–536 . F. CABELLO SÁNCHEZ, R. GARCÍA and I. VILLANUEVA. Extensions of multilinear operator on Banach spaces. Extracta Math. 15 (2000), 291–334. D. CARANDO. Extendible polynomials on Banach spaces J. Math. Anal. Appl. 233 (1999), 359–372. D. CARANDO and V. DIMANT. Extension of polynomials and John’s theorem for symmetric tensor products. Proc. Amer. Math. Soc. 135 (2007), 1769–1773. J. M. F. CASTILLO. Snarked sums of Banach spaces Extracta Math. 12 (1997), 117–128. J. M. F. CASTILLO. Banach spaces, `a la recherche du temps perdu Extracta Math. 15 (2000), 373–390. J. M. F. CASTILLO, R. GARCÍA and J. A. JARAMILLO. Extension of bilinear forms on Banachspaces Proc. Amer. Math. Soc. 129 (2001), 647–656. J. M. F. CASTILLO, R. GARCÍA and J. A. JARAMILLO. Extension of bilinear forms from subspaces of L1-spaces Ann. Acad. Scientiarum Fennicae 27 (2002), 91–96. J. M. F. CASTILLO, R. GARCÍA and J. SUÁREZ Extension and lifting of operators and polynomials Mediterranean J. Math. (to appear). W. J.DAVIS, D. W. DEAN and I. SINGER. Complemented subspaces and systems in Banach spaces Israel J. Math. 6 (1968), 303–309. A. DEFANT and K. FLORET. Tensor norms and Operator ideals. North-Holland Math. Stud. 176 (1993). A. DEFANT, D. GARCÍA, M. MAESTRE and D. PÉREZ–GARCÍA. Extension of multilinear forms and polynomials from subspaces of L1-spaces. Houston J. Math. 33 (2007), no. 3, 839–860. A. DEFANT, M. MAESTRE, and P. SEVILLA–PERIS. Cotype 2 estimates for spaces of polynomials on sequence spaces. Israel J. Math. 129 (2002), 291–315. J. DIESTEL, H. JARCHOW and A. TONGE. Absolutely Summing Operators (Cambridge University Press, 1995). S.DINEEN. Complex analysis on infinite dimensional spaces Monogr. Math. (Berlin, 1999). H. FAKHOURY. Selections lineaires associees au theoreme de Hahn–Banach, J. Funct. Anal. 11 (1972), 436–452. M. FERNÁNDEZ UNZUETA and A. PRIETO. Extension of polynomials defined on subspaces, Math. Proc. Cambridge Philos. Soc. 148 (2010) 505–518. K. FLORET and S. HUNFELD. Ultrastability of ideals of homogeneous polynomials and multilinear mappings on Banach spaces, Proc. Amer. Math. Soc. 130, No.5, 1425–1435. P. GALINDO, D. GARCÍA, M. MAESTRE and J. MUJICA. Extension of multilinear mappings on Banach spaces, Studia Math. 108 (1994), 55–76. G. GODEFROY, N. J. KALTON and G. LANCIEN. Subspaces of c0N) and Lipschitz isomorphisms, Geometric and Functional Analysis 10 (2000) 798–820. H. JARCHOW, C. PALAZUELOS, D. PÉREZ–GARCÍA and I. VILLANUEVA. Non-linear Hahn–Banach extensions and summability, J. Math. Anal. Appl. 336 (2007), 1161–1177. W.B. JOHNSON and M. ZIPPIN. Extension of operator from weak*-closed subspaces of 1 an C(K) spaces, Studia Math. 117 (1995), 43–55. N. J.KALTON and N. T. PECK. Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30. N. J. KALTON. Locally complemented subspaces and Lp-spaces for 0 < p < 1, Math. Nachr. 115 (1984), 71–97. P. KIRWAN and R. RYAN. Extendiblity of homogeneous polynomials on Banach spaces, Proc. Amer. Math. Soc. 126 (1998), 1023–1029. J. LINDENSTRAUSS and A. PEŁCZYNSKI. Contributions to the theory of classical Banach spaces, J. Funct. Anal. 8 (1971), 225–249. J. LINDENSTRAUSS and L. TZAFRIRI. On the complemented subspaces problem, Israel J. Math. 9 (1971), 263–269. V. D. MILMAN and G. PISIER. Banach spaces with a weak cotype 2 property, Israel J. Math. 54 (1986) 139–158. Y.MORENO and A. PLICHKO. On automorphic Banach spaces, Israel J. of Math. 169 (2009), 29–47. D. PÉREZ–GARCÍA. A counterexample using 4-linear forms, Bull. Austral. Math. Soc. 70 (2004), 469–473. D. PÉREZ–GARCÍA, M.M. WOLF, C. PALAZUELOS, I. VILLANUEVA and M. JUNGE. Quantum Bell inequalities can have arbitrarily large violation, Commun. Math. Phys. 279 (2008), 455–486. A. PIETSCH. Ideals of multilinear functionals, Proc. 2 Int. Conf. Operator Alg., Ideals and Their Applications in Theoretical Physics, 185199, Teubner-Texte, Leipzig, 1983. G. PISIER. Factorization of linear operators and geometry of Banach spaces, CBMS 60. G. PISIER. The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math. 94, Cambridge Univ. Press, Cambridge, 1989. N. TOMCZAK–JAEGERMANN. Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Longman Scientific Technical, 1989. I. ZALDUENDO. Extending polynomials – a survey, Publicaciones del Departamento de Análisis Matemático de la Univ. Complutense de Madrid, 41, 1998.