Characterizing symmetries in a projected entangled pair state

Thumbnail Image
Full text at PDC
Publication Date
Sanz, M.
González-Guillén, C.M.
Wolf, M.M.
Cirac, J.I.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We show that two different tensors defining the same translational invariant injective projected entangled pair state (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.
Unesco subjects
[1] Affleck A, Kennedy T, Lieb E H and Tasaki H 1988 Commun. Math. Phys. 115 477 [2] Verstraete F and Cirac J I 2004 arXiv:cond-mat/0407066 Verstraete F, Murg V and Cirac J I 2008 Adv. Phys. 57 143 Maeshima N, Hieida Y, Akutsu Y, Nishino T and Okunishi K 2001 Phys. Rev. E 64 016705 Nishio Y, Maeshima N, Gendiar A and Nishino T 2004 arXiv:cond-mat/0401115 [3] Hastings M B 2007 Phys. Rev. B 76 035114 Hastings M B 2007 J. Stat. P08024 Verstraete F and Cirac J I 2006 Phys. Rev. B 73 094423 [4] Verstraete F, Wolf M M and Pérez-García D 2006 Phys. Rev. Lett. 96 220601 [5] Buerschaper O, Aguado M and Vidal G 2009 Phys. Rev. B 79 085119 [6] Rico E and Briegel H J 2008 Ann. Phys. 323 2115–31 [7] Gross D and Eisert J 2007 Phys. Rev. Lett. 98 220503 Gross D, Eisert J, Schuch N and Pérez-García D 2007 Phys. Rev. A 76 052315 [8] Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407 [9] Hastings M B 2004 Phys. Rev. B 69 104431 Nachtergaele B and Sims R 2007 Commun. Math. Phys. 276 437–72 [10] Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 1984 [11] Pérez-García D, Wolf M M, Sanz M, Verstraete F and Cirac J I 2008 Phys. Rev. Lett. 100 167202 [12] Anfuso F and Rosch A 2007 Phys. Rev. B 76 085124 [13] Fannes M, Nachtergaele B and Werner R W 1992 Commun. Math. Phys. 144 443 [14] Pérez-García D, Verstraete F, Wolf M M and Cirac J I 2007 Quantum Inf. Comput. 7 401 [15] Vidal G 2003 Phys. Rev. Lett. 91 147902 [16] Schuch N, Wolf M M, Verstraete F and Cirac J I 2007 Phys. Rev. Lett. 98 140506 [17] Pérez-García D, Verstraete F, Cirac J I and Wolf M M 2008 Quantum. Inf. Comput. 8 0650–63 [18] Horn R A and Johnson C R 1991 Topics in Matrix Analysis (Cambridge: Cambridge University Press) [19] Singh S, Pfeifer R N C and Vidal G 2009 arXiv:0907.2994 [20] Sanz M, Wolf M M, Pérez-García D and Cirac J I 2009 Phys. Rev. A 79 042308 [21] Yu Kitaev A 2003 Ann. Phys. 303 2–30