Bragg diffraction and the iron crust of cold neutron stars

Thumbnail Image
Full text at PDC
Publication Date
Moreno Navarro, Gaspar
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
If cooled-down neutron stars have a thin atomic crystalline-iron crust, they must diffract X-rays of appropriate wavelength. If the diffracted beam is to be visible from Earth (an extremely rare but possible situation), the illuminating source must be very intense and near the reflecting star. An example is a binary system composed of two neutron stars in close orbit, one of them inert, the other an X-ray pulsar. (Perhaps an "anomalous" X-ray pulsar or magnetar, not powered by gas absorption from the companion or surrounding space, would be the cleanest example.) The observable to be searched for is a secondary peak added (quasi-) periodically to the main X-ray pulse. The distinguishing feature of this secondary peak is that it appears at wavelengths related by simple integer numbers,λ,λ/2,λ/3,...,λ/n because of Bragg's diffraction law.
© Springer Science+Business Media B.V. 2011. The authors thank Krysty Dyer and Katja Waidelich for a careful reading of the first manuscript. This work was supported in part by grants FPA2007-29115-E, MCYT FPA 2008- 00592/FPA, FIS2008-01323 (Spain).
Unesco subjects
Bombaci, I.: Eur. Phys. J. A 31, 810 (2007) Borkowski, K.J., Hendrick, S.P., Reynolds, S.P.: arXiv:0711.3140 [astro-ph] Campana, R.,Massaro, E., Mineo, T., Cusumano, G.: arXiv:0903.3655 [astro-ph.HE] Chamel, N., Haensel, P.: Living Rev. Relativ. 11, 10 (2008). arXiv: 0812.3955 [astro-ph] Cottam, J., Paerels, F., Mendez, M.: Nature 420, 51–54 (2002) Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction. Prentice Hall, Upper Saddle River (2001) de Young, D.S.: Science 19 252, 389–396 (1991) Graham-Smith, F.: Rep. Prog. Phys. 66, 173–238 (2003) Haensel, P., Potekhin, A.Y., Yakovlev, D.G.: Neutron Stars 1: Equation of State and Structure. Springer, New York (2006) Huber, H., Weber, F., Weigel, M.K.: Phys. Rev. C 50, R1287 (1994) Imshennik, V.S., Manukovskii, K.V., Nadyozhin, D.K., Popov, M.S.: Astron. Lett. 28, 821 (2002). arXiv:astro-ph/0402153 Kawasaki Steel 21st Century Foundation, An introduction to iron and steel processing (1997) (unpublished) Kim, C., Kalogera, V., Lorimer, D.R.: Astrophys. J. 584, 985 (2003) Klahn, T., et al.: Phys. Rev. C 74, 035802 (2006). arXiv:nucl-th/ 0602038 Kunzl, T.: Coherent and incoherent radiation processes in pulsars. Dissertation presented to the University of Munich, 2001, available at Lyne, A., et al.: Science 303, 1153 (2004) Peters, P.C.: Phys. Rev. 136, B1224–B1232 (1964) Randle, V., Engler, O.: Texture Analysis, CRC Press, Boca Raton (2000). Table 4.2 Regimbau, T., et al.: Class. Quantum Gravity 22, S935 (2005) Saito, Y., et al.: Astrophys. J. 477, L37–L40 (1997) Shternin, P.S., et al.: Mon. Not. R. Astron. Soc. 382, L43–L47 (2007) Suleimanov, V.F., Potekhin, A.Y.,Werner, K.: arXiv:0905.3276 [astroph. SR] Tennant, A.F., et al.: Astrophys. J. 559, L173–L176 (2001) Thorsett, S.E., Chakrabarty, D.: Astrophys. J. 512, 288 (1999). arXiv:astro-ph/9803260 Weisskopf, M.C., et al.: Astrophys. J. 601, 1050–1057 (2004) Yakovlev, D.G., Pethick, C.J.: Annu. Rev. Astron. Astrophys. 42, 169– 210 (2004) (see Sect. 5.7)