The dark magnetism of the Universe

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
World Scientific Publ Co Pte Ltd
Google Scholar
Research Projects
Organizational Units
Journal Issue
Despite the success of Maxwell's electromagnetism in the description of the electromagnetic on small scales, we know very little about the behavior of electromagnetic fields on cosmological distances. Thus, it has been suggested recently that the problems of dark energy and the origin of cosmic magnetic fields could be pointing to a modification of Maxwell's theory on large scales. Here, we review such a proposal in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. On super-Hubble scales, the new mode is essentially given by the temporal component of the electromagnetic potential and contributes as an effective cosmological constant to the energy-momentum tensor. The new state can be generated from quantum fluctuations during inflation and it is shown that the predicted value for the cosmological constant agrees with observations, provided inflation took place at the electroweak scale. We also consider more general theories including non-minimal couplings to the spacetime curvature in the presence of the temporal electromagnetic background. We show that both in the minimal and non-minimal cases, the modified Maxwell's equations include new effective current terms which can generate magnetic fields from sub-galactic scales up to the present Hubble horizon. The corresponding amplitudes could be enough to seed a galactic dynamo or even to account for observations just by collapse and differential rotation in the protogalactic cloud.
© World Scientific Publishing Company. This work has been supported by MICINN (Spain) project numbers FIS 2008-01323 and FPA 2008-00592, CAM/UCM 910309 and MICINN Consolider-Ingenio MULTIDARK CSD2009-00064. J.B.J. is also supported by the Ministerio de Educación under the postdoctoral contract EX2009-0305.
Unesco subjects
1. A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 82, 939 (2010). 2. L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002). 3. R. M. Kulsrud and E. G. Zweibel, Rep. Prog. Phys. 71, 0046091 (2008). 4. P. P. Kronberg, Rep. Prog. Phys. 57, 325 (1994). 5. A. Neronov and I. Vovk, Science 328, 73 (2010). 6. F. Tavecchio et al., Mon. Not. R. Astron. Soc. 406, L70 (2010). 7. S. I. Ando and A. Kusenko, Astrophys. J. 722, L39 (2010). 8. A. Neronov et al., arXiv:1006.0164. 9. A. Higuchi, L. Parker and Y. Wang, Phys. Rev. D 42, 4078 (1990). 10. J. B. Jiménez and A. L. Maroto, Phys. Lett. B 686, 175 (2010). 11. A. R. Zhitnitsky, Phys. Rev. D 82, 103520 (2010). 12. N. Ohta, Phys. Lett. B 695, 41 (2011). 13. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, 1982). 14. S. L. Adler, J. Lieberman and Y. J. Ng, Ann. Phys. 106, 279 (1977). 15. M. R. Brown and A. C. Ottewill, Phys. Rev. D 34, 1776 (1986). 16. M. J. Pfenning, Phys. Rev. D 65, 024009 (2002). 17. J. B. Jiménez and A. L. Maroto, J. Cosmol. Astropart. Phys. 0903, 016 (2009). 18. J. B. Jiménez and A. L. Maroto, Int. J. Mod. Phys. D 18, 2243 (2009). 19. J. B. Jiménez, T. S. Koivisto, A. L. Maroto and D. F. Mota, J. Cosmol. Astropart. Phys. 0910, 029 (2009). 20. C. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, 1993). 21. J. B. Jiménez and A. L. Maroto, J. Cosmol. Astropart. Phys. 0902, 025 (2009). 22. C. Caprini and P. G. Ferreira, J. Cosmol. Astropart. Phys. 0502, 006 (2005). 23. J. B. Jiménez and A. L. Maroto, Phys. Rev. D 83, 023514 (2011). 24. J. B. Jiménez and A. L. Maroto, J. Cosmol. Astropart. Phys. 1012, 025 (2010). 25. A. Schuster, Proc. Phys. Soc. London 24, 121 (1912). 26. A. Einstein, Schw. Naturf. Ges. Verh. 105 Pt. 2, 85 (1924). 27. Eds. S. Saunders and H. R. Brown, Philosophy of Vacuum (Clarendon Press, 1991). 28. P. M. S. Blackett, Nature 159, 658 (1947). 29. Particle Data Group (C. Amsler et al.), Phys. Lett. B 667, 1 (2008). 30. R. Opher and U. F. Wichoski, Phys. Rev. Lett. 78, 787 (1997). 31. R. da Silva de Souza and R. Opher, J. Cosmol. Astropart. Phys. 1002, 022 (2010).