Testing the horizontal-vertical stereo anisotropy with the critical-band masking paradigm

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Scholar One
Google Scholar
Research Projects
Organizational Units
Journal Issue
Stereo vision has a well-known anisotropy: At low frequencies, horizontally oriented sinusoidal depth corrugations are easier to detect than vertically oriented corrugations (both defined by horizontal disparities). Previously, Serrano-Pedraza and Read (2010) suggested that this stereo anisotropy may arise because the stereo system uses multiple spatial-frequency disparity channels for detecting horizontally oriented modulations but only one for vertically oriented modulations. Here, we tested this hypothesis using the critical-band masking paradigm. In the first experiment, we measured disparity thresholds for horizontal and vertical sinusoids near the peak of the disparity sensitivity function (0.4 cycles/°), in the presence of either broadband or notched noise. We fitted the power-masking model to our results assuming a channel centered on 0.4 cycles/°. The estimated channel bandwidths were 2.95 octaves for horizontal and 2.62 octaves for vertical corrugations. In our second experiment we measured disparity thresholds for horizontal and vertical sinusoids of 0.1 cycles/° in the presence of band-pass noise centered on 0.4 cycles/° with a bandwidth of 0.5 octaves. This mask had only a small effect on the disparity thresholds, for either horizontal or vertical corrugations. We simulated the detection thresholds using the power-masking model with the parameters obtained in the first experiment and assuming either single-channel and multiple-channel detection. The multiple-channel model predicted the thresholds much better for both horizontal and vertical corrugations. We conclude that the human stereo system must contain multiple independent disparity channels for detecting horizontally oriented and vertically oriented depth modulations.
Anderson, A. J. (2003). Utility of a dynamic termination criterion in the ZEST adaptive threshold method. Vision Research, 43, 165–170. Blackwell, K. T. (1998). The effect of white and filtered noise on contrast detection thresholds. Vision Research, 38, 267–280. Bradshaw, M. F., Hibbard, P. B., Parton, A. D., Rose, D., & Langley, K. (2006). Surface orientation, modulation frequency and the detection and perception of depth defined by binocular disparity and motion parallax. Vision Research, 46(17), 2636–2644. Bradshaw, M. F., & Rogers, B. J. (1999). Sensitivity to horizontal and vertical corrugations defined by binocular disparity. Vision Research, 39(18), 3049– 3056. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. Cagenello, R., & Rogers, B. J. (1993). Anisotropies in the perception of stereoscopic surfaces: The role of orientation disparity. Vision Research, 33, 2189– 2201. Cobo-Lewis, A. B., & Yeh, Y. (1994). Selectivity of cyclopean masking for the spatial frequency of binocular disparity modulation. Vision Research, 34(5), 607–620. Davenport, W. B., & Root, W. L. (1958). An introduction to the theory of random signals and noise. New York, NY: McGraw Hill. Emerson, P. L. (1986). Observations on maximumlikelihood and Bayesian methods of forced-choice sequential threshold estimation. Perception & Psychophysics, 39, 151–153. Fletcher, H. (1940). Auditory patterns. Reviews of Modern Physics, 12, 1861–1881. García-Pérez, M. A. (1998). Forced-choice staircases with fixed steps sizes: Asymptotic and small-sample properties. Vision Research, 38, 1861–1881. Green, D. M., & Swets, J. A. (1974). Signal detection theory and psychophysics (Reprint with corrections of the original 1966 ed.). Huntington, NY: Robert E. Krieger Publishing Co. Guillam, B., & Ryan, C. (1992). Perspective, orientation disparity, and anisotropy in stereoscopic slant perception. Perception, 21(4), 427–439. Hibbard, P. B., Bradshaw, M. F., Langley, K., & Rogers, B. J. (2002). The stereoscopic anisotropy: Individual differences and underlying mechanisms. Journal of Experimental Psychology-Human Perception and Performance, 28(2), 469–476. King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C., & Supowit, A. (1994). Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation. Vision Research, 34, 885– 912. Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychotoolbox-3? Perception, 36 (ECVP Abstract Supplement). Losada, M. A., & Mullen, K. T. (1995). Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking. Journal of the Optical Society of America A, 12, 250–260. Majaj, N. J., Pelli, D. G., Kurshan, P., & Palomares, M. (2002). The role of spatial frequency channels in letter identification. Vision Research, 42, 1165–1184. Mitchison, G. J., & McKee, S. P. (1990). Mechanisms underlying the anisotropy of stereoscopic tilt perception. Vision Research, 30(11), 1781–1791. Moore, B. C. J. (1997). An introduction to the psychology of hearing. New York: Academic Press. Morrone, M. C., & Burr, D. C. (1988). Feature detection in human vision: A phase-dependent energy model. Proceedings of the Royal Society of London B, 235, 221–245. Mullen, K. T., & Losada, M. A. (1999). The spatial tuning of color and luminance peripheral vision measured with notch filtered noise masking. Vision Research, 39, 721–731. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308– 313. Patterson, R. D. (1976). Auditory filter shapes derived with noise stimuli. Journal of the Acoustical Society of America, 59, 640–654. Patterson, R. D., & Moore, B. C. J. (1986). Auditory filters and excitation patterns as representations of frequency resolution. In: B. C. J. Moore (Ed.) Frequency selectivity in hearing (pp. 123–177). New York: Academic Press. Patterson, R. D., & Nimmo-Smith, I. (1980). Offfrequency listening and auditory-filter asymmetry. Journal of the Acoustical Society of America, 67, 229–245. Pelli, D. G. (1981). Effects of visual noise. Unpublished doctoral dissertation, Cambridge University. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. Pentland, A. (1980). Maximum likelihood estimation: The best PEST. Perception & Psychophysics, 28, 377–379. Perkins, M. E., & Landy, M. S. (1991). Nonadditivity of masking by narrow-band noises. Vision Research, 31(6), 1053–1065. Rogers, B. J., & Graham, M. E. (1982). Similarities between motion parallax and stereopsis in human depth perception. Vision Research, 22, 261–270. Schumer, R., & Ganz, L. (1979). Independent stereoscopic channels for different extents of spatial pooling. Vision Research, 19, 1303–1314. Serrano-Pedraza, I., Brash, C., & Read, J. C. A. (2013b). Testing the horizontal-vertical stereo anisotropy with the power-spectrum model of visual masking. Vision Sciences Society (Naples, Florida), USA. Journal of Vision. Serrano-Pedraza, I., & Read, J. C. A. (2009). Stereo vision requires an explicit encoding of vertical disparity. Journal of Vision, 9(4):3, 1–13, http://, doi:10. 1167/9.4.3. [PubMed] [Article] Serrano-Pedraza, I., & Read, J. C. A. (2010). Multiple channels for horizontal, but only one for vertical corrugations? A new look at the stereo anisotropy. Journal of Vision, 10(12):10, 1–11, http://www., doi:10.1167/ 10.12.10. [PubMed] [Article] Serrano-Pedraza, I., & Sierra-Va´zquez, V. (2006). The effect of white-noise mask level on sinewave contrast detection thresholds and the critical-bandmasking model. Spanish Journal of Psychology, 9(2), 249–262. Serrano-Pedraza, I., Sierra-Vázquez, V., & Derrington, A.M. (2013a). The power-spectrum model of visual masking: Simulations and empirical data. Journal of the Optical Society of America A, 30(6), 1119– 1135. Solomon, J. A. (2000). Channel selection with nonwhite-noise mask. Journal of the Optical Society of America A, 17, 986–993. Solomon, J. A., & Pelli, D. G. (1994). The visual filter mediating letter identification. Nature, 369, 395– 397. Talgar, C. P., Pelli, D. G., & Carrasco, M. (2004). Covert attention enhances letter identification without affecting channel tuning. Journal of Vision, 4(1):3, 22–31, content/4/1/3, doi:10.1167/4.1.3. [PubMed] [Article] Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35(17), 2503–2522. Tyler, C. W. (1975). Stereoscopic tilt and size aftereffects. Perception, 4, 187–192. Tyler, C. W. (1983). Sensory processing of binocular disparity. In C. Schor & K. J. Ciuffreda (Eds.), Vergence eye movements: Basic and clinical aspects of binocular (pp. 199–195). London, UK: Butterworths. Tyler, C. W. (1991). Cyclopean vision. In D. Regan (Ed.), Vision and visual dysfunction, Vol 9, Binocular vision (pp. 38–74). London, UK: Macmillan. van der Willigen, R. F., Harmening, W. M., Vossen, S., & Wagner, H. (2010). Disparity sensitivity in man and owl: Psychophysical evidence for equivalent perception of shape-from-stereo. Journal of Vision, 10(1):10, 1–11, content/10/1/10, doi:10.1167/10.1.10. [PubMed] Watson, A. B., & Robson, J. G. (1981). Discrimination at threshold: Labelled detectors in human vision. Vision Research, 21, 1115–1122. Westrick, Z. M., Henry, C. A., & Landy, M. S. (2013). Inconsistent channel bandwidth estimates suggest winner-take-all nonlinearity in second-order vision. Vision Research, 5(81), 58–68. Witz, N., & Hess, R. F. (2013). Mechanisms underlying global stereopsis in fovea and periphery. Vision Research, 13(87), 10–21.