Erythrocyte rouleau formation under polarized electromagnetic fields

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study the influence of an external electromagnetic field of 1.8 GHz in the formation or disaggregation of long rouleau of identical erythrocyte cells. In particular we calculate the variation of the transmembrane potential of an individual erythrocyte illuminated by the external field due to the presence of the neighboring erythrocytes in the rouleau, and compare the total electric energy of isolated cells with the total electric energy of the rouleau. We show that the polarization of the external electromagnetic field plays a fundamental role in the total energy variation of the cell system, and consequently in the formation or disaggregation of rouleau.
© The American Physical Society. This work was supported by the Fondo de Investigaciones Sanitarias under Grant No. PI03/0295 and by the Spanish Ministerio de Ciencia y Tecnología under Project No. BFM2002-02646.
Unesco subjects
1) R. Ben-Ami, G. Barshtein, T. Mardi, V. Deutch, O. Elkayam, S. Yedgar, and S. Berliner, Am. J. Physiol. 285, H2663, 2003. 2) R. Skalak, P. Zarda, K. M. Jan, and S. Chien, Biophys. J. 35, 771, 1981. 3) B. Bozic, S. Svetina, and B. Zeks, Phys. Rev. E 55, 5834, 1997. 4) J. Derganc, B. Bozic, S. Svetina, and B. Zeks, Biophys. J. 84, 1486, 2003. 5) Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, Med. Biol. 24, 503, 1998. 6) J. Gimsa and D. Wachner, Eur. Biophys. J. 30, 463, 2001. 7) J. C. Lin, A. W. Guy, and C. C. Johnson, IEEE Trans. Microwave Theory Tech. 23, 246, 1975. 8) J. L. Sebastián, S. Muñoz San Martín, M. Sancho, and J. M. Miranda, Phys. Med. Biol. 46, 21, 2001. 9) S. Muñoz San Martín, J. L. Sebastián, M. Sancho, and J. M. Miranda, Phys. Med. Biol. 48, 1649, 2003. 10) M. Saito and H. P. Schwan, Biological Effects of Microwave Radiatio, Plenum, New York, 1961. 11) H. P. Schwan and L. D. Sher, J. Electrochem. Soc. 116, 22C, 1969. 12) L. D. Sher, E. Kresh, and H. P. Schwan, Biophys. J. 10, 970, 1970. 13) S. Takashima and H. P. Schwan, Biophys. J. 47, 513, 1985. 14) F. A. Sauer, in Coherent Excitations in Biological Systems, edited by H. Frölich K. Kremer, Springer, New York, 1983, pp. 134–144. 15) L. D. Sher, Ph.D. thesis, University of Pennsilvania, 1969. 16) H. P. Schwan, Br. J. Cancer 45, 513, 1982. 17) F. A. Sauer, in Interactions between Electromagnetic Fiels and Cells, edited by A. Chiabrera, C. Nicolini, and H. P. Schwan, Plenum, New York, 1985, pp. 181–202. 18) K. R. Foster and A. E. Sowers, Biophys. J. 69, 77, 1995. 19) J. Thuéry, Microwaves: Industrial, Scientific and Medial Applications, Artech House, Norwood, 1992. 20) O. P. Gandhi and G. Kang, Phys. Med. Biol. 47, 1501, 2002. 21) J. B. Van de Kamer and J. W. Lagendijk, Phys. Med. Biol. 47, 1827, 2002. 22) M. Martínez-Burdalo, A. Martín, M. Anguiano, and R. Villar, Phys. Med. Biol. 49, 345, 2004. 23) J. L. Sebastián, S. Muñoz San Martín, M. Sancho, and J. M. Miranda, Bioelectrochemistry 64, 39, 2004. 24) A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, Boca Raton, 1998. 25) P. Moon and D. E. Spencer, Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions, Springer, Berlin, 1998. 26) M. I. G. Bloor and M. J. Wilson, Phys. Rev. E 61, 4218, 2000. 27) Y. Jie, L. Quanhui, L. Jixing, and O. -Y. Zhong-Can, Phys. Rev. E 58, 4730, 1998. 28) P. Kuchel and E. Fackerell, Bull. Math. Biol. 61, 209, 1999. 29) S. Wolfram, The Mathematica Book, Wolfram Media, Champaign, 2003. 30) L. Stryer, Biochemistry, Freeman, New York, 1995. 31) J. Gimsa and D. Wachner, Biophys. J. 81, 1888, 2001. 32) J. P. Huang and K. W. Yu, Commun. Theor. Phys. 39, 506, 2003. 33) R. Martinsen, S. Grimnes, and H. Schwan, Encyclopedia of Surface and Colloid Science, Marcel Dekker, New York, 2002, pp. 2643–2652. 34) J. Z. Bao, C. C. Davis, and R. E. Schmukler, Biophys. J. 61, 1427, 1992. 35) M. Simeonova, D. Wachner, and J. Gimsa, Bioelectrochemistry 56, 215, 2002. 36) L. Miao, U. Seifert, M. Wortis, and H. G. Döbereiner, Phys. Rev. E 49, 5389, 1994. 37) U. Seifert and R. Lipowsky, Phys. Rev. A 42, 4768, 1990. 38) H. Darmani and W. T. Coakley, Biochim. Biophys. Acta 1021, 182, 1990. 39) T. B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge, 1995. 40) C. Grosse and H. Schwan, Biophys. J. 63, 1632, 1992. 41) L. M. Liu and S. F. Cleary, Bioelectromagnetics, N.Y., 16, 160, 1995. 42) P. Bernardi, M. Cavagnaro, X. d’Inzeo, and M. Liberti, URSI XXVI General Assembly, 1999, p. 616. 43) C. E. Miller and C. S. Henriquez, IEEE Trans. Biomed. Eng. 35, 712, 1988. 44) S. Muñoz San Martín, J. L. Sebastián, M. Sancho, and J. M. Miranda, Bioelectromagnetics, N.Y., 25, 631, 2004. 45) G. C. Hsiao, Z. Angew. Math. Mech. 70, 493, 1990. 46) C. Liu, D. Sheen, and K. Huang, IEEE Trans. Nanobiosci. 2, 104, 2003. 47) J. Jin, The Finite Element Method in Electromagnetics, Wiley, New York, 1993. 48) J. Douglas, Jr., J. E. Santos, and D. Sheen, Math. Models Meth. Appl. Sci. 10, 593 , 2000. 49) E. Becache and P. Joly, Tech. Rep. 4164, INRIA, 2001. 50) D. N. Shenton and Z. J. Cendes, IEEE Trans. Magn. 21, 2535, 1985. 51) S. McFee and J. P. Webb, IEEE Trans. Magn. 21, 2535, 1992. 52) S. McFee and D. Giannacopoulos, IEEE Trans. Magn. 32, 1357, 1996. 53) P. Fernandes, P. Girdinio, M. Repetto, and G. Secondo, IEEE Trans. Magn. 28, 1739 , 1992. 54) D. Giannacopoulos and S. McFee, IEEE Trans. Magn. 30, 3523, 1994. 55) S. McFee and D. Giannacopoulos, IEEE Trans. Magn. 34, 3284, 1998. 56) W. Gui and I. Babuska, Numer. Math. 49, 613, 1986. 57) K. R. Foster and P. H. Schwan, in Handbook of Biological Effects of Electromagnetic Radiation, edited by C. Polk and E. Postow, CRC, Boca Raton, 1995, pp. 25–102. 58) J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.