Publication:
Thermal rho and sigma mesons from chiral symmetry and unitarity

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2002-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the temperature evolution of the rho and sigma mass and width, using a unitary chiral approach. The one-loop pipi scattering amplitude in chiral perturbation theory at Tnot equal0 is unitarized via the inverse amplitude method. Our results predict a clear increase with T of both the rho and sigma widths. The masses decrease slightly for high T, while the rhopipi coupling increases. The rho behavior seems to be favored by experimental results. In the sigma case, it signals chiral symmetry restoration.
Description
©2002 The American Physical Society. Work supported by the Spanish CICYT projects, Grant Nos. FPA2000-0956, PB98-0782, and BFM2000-1326. J.R.P. acknowledges support from the CICYT-INFN collaboration, Grant No. 003P 640.15, and E. Oset for useful comments.
Unesco subjects
Keywords
Citation
1. HELIOS-3 Collaboration, M. Masera et al., Nucl. Phys. A590, 127c (1995). 2. CERES (NA45) Collaboration, B. Lenkeit et al., Nucl. Phys. A661, 23c (1999). 3. J. Alam et al., Ann. Phys. ~N.Y.! 286, 159 (2001). 4. K. Haglin, Nucl. Phys. A584, 719 (1995). 5. G.Q. Li, C.M. Ko, and G.E. Brown, Phys. Rev. Lett. 75, 4007 (1995); C.M. Ko et al., Nucl. Phys. A610, 342c (1996). 6. C. Song and V. Koch, Phys. Rev. C 54, 3218 (1996). 7. V.L. Eletsky et al., Phys. Rev. C 64, 035202 (2001). 8. R.D. Pisarski, Phys. Rev. D 52, 3773 (1995); Nucl. Phys. A590, 553c (1995). 9. H.A. Weldon, Ann. Phys. (N.Y.) 228, 43 ( 1993). 10. M. Dey, V.L. Eletsky and B.L. Ioffe, Phys. Lett. B 252, 620 (1990). 11. C. Gale and J. Kapusta, Nucl. Phys. B357, 65 (1991). 12. C.A. Dominguez, M. Loewe, and J.C. Rojas, Z. Phys. C 59, 63 (1993). 13. Y.B. He et al., Nucl. Phys. A630, 719 (1998). 14. D. Blaschke et al., Int. J. Mod. Phys. A 16, 2267 (2001). 15. A. Gómez Nicola, F.J. Llanes-Estrada, and J.R. Peláez, hep-ph/0203134 (to appear in Phys. Lett. B). 16. S. Weinberg, Physica A 96, 327 (1979). 17. J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). 18. A. Dobado, A. Gómez-Nicola, A.L. Maroto, and J.R. Peláez, Effective Lagrangians for the Standard Model, Texts and Monographs in Physics (Springer-Verlag, Berlin, 1997); A. Pich, Rep. Prog. Phys. 58, 563 (1995!) U.G. Meissner, ibid. 56, 903 (1993). 19. T.N. Truong, Phys. Rev. Lett. 61, 2526 (1988); 67, 2260 (1991); A. Dobado, M.J. Herrero, and T.N. Truong, Phys. Lett. B 235, 134 (1990); A. Dobado and J.R. Peláez, Phys. Rev. D 47, 4883 ~1993!; 56, 3057 (1997). 20. F. Guerrero and J.A. Oller, Nucl. Phys. B537, 459 (1999); B602, 641(E) (2001); A. Gómez Nicola and J.R. Peláez, Phys. Rev. D 65, 054009 (2002). 21. J. Nieves, M. Pavon Valderrama, and E. Ruiz Arriola, Phys.Rev. D 65, 036002 (2002). 22. J.A. Oller and E. Oset, Nucl. Phys. A620, 438 (1997); J. Nieves and E. Ruiz Arriola, Phys. Rev. D 63, 076001 (2001); Phys. Lett. B 455, 30 (1999); Nucl. Phys. A679, 57 (2000). 23. J.A. Oller, E. Oset, and J.R. Peláez, Phys. Rev. Lett. 80, 3452 (1998); Phys. Rev. D 59, 074001 (1999); 60, 099906(E) (1999). 24. J. Vicente Vacas and E. Oset, nucl-th/0204055. 25. L. Roca, E. Oset, and M.J. Vicente-Vacas, Phys. Lett. B 541, 77 (2002). 26. J. G Messchendorp et al., nucl-ex/0205009. 27. P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989). 28. G. Amoró s, J. Bijnens, and P. Talavera, Nucl. Phys. B585, 293 (2000); B598, 665E (2001); B602, 87 (2001). 29. W. Broniowski, W. Florkowski, and B. Hiller, Nucl. Phys. A696, 870 (2001). 30. A. Erdélyi et al., Higher Transcendental Functions (Krieger, New York, 1981), Vol. 1, where Lin (z) is called F(z,n). 31. A. Bochkarev and J. Kapusta, Phys. Rev. D 54, 4066 (1996); K. Yokokawa et al., Phys. Rev. C 66, 022201 (R) (002). 32. In the notation of Ref [15], Δ J_0^3 (2) and Δ J_0,2^tu (tu) correspond t Δ J_0 (√(s,) ,0) and ΔJ_0,2 (0, √(-t ) ) respectively. 33. Remember that t(s,x) =(x - 1) (s – 4 mm_π^2 ) / 2 , u(s, x) = t (s – x ) with x being the cosine of the scattering angle. 34. For s<0 there is always a finite region in x = [-1 , 1] such that t,u(s,x)>4 m_π^2
Collections