The SM as the quantum low-energy effective theory of the MSSM

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Springer Verlag
Google Scholar
Research Projects
Organizational Units
Journal Issue
In the framework of the minimal supersymmetric standard model we compute the one-loop effective action for the electroweak bosons obtained after integrating out the different sleptons, squarks, neutralinos and charginos, and present the result in terms of the physical sparticle masses. In addition we study the asymptotic behavior of the two-, three- and four-point Green's functions with external electroweak bosons in the limit where the physical sparticle masses are very large in comparison with the electroweak scale. We find that in this limit all the effects produced by the supersymmetric particles can either be absorbed in the standard model parameters and gauge bosons wave functions, or else they are suppressed by inverse powers of the supersymmetric particle masses. This work, therefore, completes the proof of decoupling of the heavy supersymmetric particles from the standard ones in the electroweak bosons effective action and in the sense of the Appelquist-Carazzone theorem; we started this proof in a previous work. From the point of view of effective field theories this work can be seen as a (partial) proof that the SM can indeed be obtained from the MSSM as the quantum low-energy effective theory of the latter when the SUSY spectra are much heavier than the electroweak scale.
© Springer-Verlag 2000.
Unesco subjects
1. For an introduction to supersymmetry see, e.g., J. Wess, J. Bagger, Supersymmetry and supergravity (Princeton University Press 1983); N.P. Nilles, Phys. Rep. 110, 1(1984); D. Bailin, A. Love, Supersymmetric gauge field theory and string theory (Institute of Physics Publishing 1996) 2. For a pedagogical introduction to the MSSM, see H.E. Haber, Introductory low-energy supersymmetry, published in Boulder TASI-92:589-688, University of Colorado, SCIPP-92/93, hep-ph/9306207; H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985); J.F. Gunion, H..E. Haber, Nucl. Phys. B 272, 1 (1986); Nucl. Phys. B 278, 449 (1986) 3. L. Girardello, M.T. Grisaru, Nucl. Phys. B 194, 65 (1982) 4. P.H. Chankowski et al., Nucl. Phys. B 417, 101 (1994) 5. H.E. Haber, When are radiative corrections important in the minimal supersymmetric model. (UC, Santa Cruz). SCIPP-93-06, March 1993. 52pp. Proceedings of INFN Eloisatron Project: 23rd Workshop: The Decay Properties of SUSY Particles, Erice, Italy, 28 September-4 October 1992. In *Erice 1992, 23rd Eloisatron workshop, Properties of SUSY particles*321-372, hep-ph/9305248 6. D. García, J. Solá, Mod. Phys. Lett. A 9, 211 (1994); D. García, R.A. Jiménez, J. Solá, W. Hollik, Nucl. Phys. B 427, 53 (1994); J.A. Coarasa et al., Eur. Phys. J. C 2, 373 (1998); A. Djouadi et al., Eur. Phys. J. C 1, 149 (1998) 7. T. Inami, C.S. Lim, A. Yamada, Mod. Phys. Lett. A 7, 2789 (1992) 8. H.E. Haber, Higgs bosons in the minimal supersymmetric model: The influence of radiative corrections (UC, Santa Cruz). SCIPP- 92/31, published in Perspectives on Higgs physics (World Scientific Publ. 1992) p. 79 9. M. Carena, M. Quir_os, C.E.M. Wagner, Nucl. Phys. B 461, 407 (1996) 10. T. Appelquist, J. Carazzone, Phys. Rev. D 11, 2856 (1975) 11. For an introduction to the subject of integration of heavy fields and the computation of e_ective actions see, for instance, A. Dobado et al., E_ective Lagrangians for the Standard Model (Springer-Verlag 1997) 12. M. Veltman, Act. Phys.Pol. B 8 475 (1977); Nucl. Phys. B 123, 89 (1977); D.R.T. Jones, M. Veltman, Nucl. Phys. B 19, 146 (1981); M. Chanowitz, M. Furman, I. Hinchli ffe, Phys. Lett. B 78, 285 (1978), Nucl. Phys. B 153, 402 (1979) 13. G. Lin, H. Steger, Y. Yao, Phys. Rev. D 49, 2414 (1994); F. Feruglio, L. Maiani, A. Masiero, Nucl. Phys. B 387, 523 (1992) 14. T. Appelquist, C. Bernard, Phys. Rev. D 22, 200 (1980); A.C. Longhitano, Nucl. Phys. B 188, 118 (1981); Phys. Rev. D 22, 1166 (1980); M.J. Herrero, E.R. Morales, Nucl. Phys. B 418, 431 (1994); Nucl. Phys. B 437, 319 (1995); D. Espriu, J. Matias, Phys. Lett. B 341, 332 (1995); S. Dittmaier, C. Grosse-Knetter, Phys. Rev. D 52, 7276 (1995); Nucl. Phys. B 459, 497 (1996) 15. G. Giavarini, C.P. Martin, F. Ruiz Ruiz, Nucl. Phys. B 381, 222 (1992) 16. A. Dobado, M.J. Herrero, S. Peñaranda, Eur. Phys. J. C 7, 313 (1999) 17. G. Passarino, M. Veltman, Nucl. Phys. B 160, 151 (1979) 18. A. Dobado, M.J. Herrero, S. Peñaranda, The Higgs sector of the MSSM in the decoupling limit, FTUAM 99/20