Inflatonless inflation

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
Whichever turns out to be the real theory of gravitation, the corresponding low-energy effective Lagrangian will probably contain higher derivative terms. In this work we study the general conditions on those terms in order to produce enough inflation to solve some of the problems of the standard Friedmann-Robert;son-Walker cosmology in the absence of any inflaton field. We apply our results to some particular scenarios where higher derivative terms appear in the effective Lagrangian for gravity, such as those coming from graviton (two) loops or integrating out ordinary matter (such as the one present in the standard model).
© Physical Society. This work has been partially supported by the Ministerio de Educacion y Ciencia (Spain) (CICYT AEN93-0776).
Unesco subjects
[1] A. H. Guth, Phys. Rev. D 23, 347 (1981). [2] A. D. Linde, Rep. Prog. Phys. 47, 925 (1984). [3] A. A. Starobinsky, Phys. Lett. 91B,99 (1980). [4] A. Vilenkin, Phys. Rev. D 32, 2511 (1985). [5] A. Dobado and A. Lopez, Phys. Lett. B 316, 250 (1993). [6] D. M. Capper, J. J. Dulwich, and M. Ramon Medrano, Nucl. Phys. B254, 737 (1985); M. H. Goroff and A. Sagnotti, ibid. B266, 709 (1986). [7] S. Weinberg, Physica A 96, 327 (1979). [8] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984);Nucl. Phys. B250, 465 (1985);B250, 517 (1985). [9] A. Dobado and M. J. Herrero, Phys. Lett. B 228, 495 (1989); 233, 505 (1989); J. Donoghue and C. Ramirez, ibid. 234, 361 (1990). [10] J. F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994). [11] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Ef fective Action in Quantum Gravity (IOP, Bristol, 1992). [12] J. Z. Simon, Phys. Rev. D 43, 3308 (1991). [13] T. H. R. Skyrme, Proc. R. Soc. London 260, 127 (1961); T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962); G. S. Adkins, C. R. Nappi, and E. Witten, Nucl. Phys. B228, 552 (1983). [14] J. D. Barrow and A. C. Ottewill, J. Phys. A 16, 2757 (1983). [15] B.Whitt, Phys. Lett. 145B,176 (1984); K. Maeda, Phys. Rev. D 39, 3159 (1989); D. Wands, Class. Quantum Grav. 11,269 (1994). [16] G. Magnano, M. Ferraris, and M. Francaviglia, Class. Quantum Grav. 7, 557 (1990). [17] S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). [18] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1982). [19] M. V. Fischetti, J. B. Hartle, and B. L. Hu, Phys. Rev. D 20, 1757 (1979). [20] L. A. Kofman, V. F. Mukhanov, and D. Yu. Pogosyan, Sov. Phys. JETP 66, 433 (1987).