Two properties of electromagnetic knots

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We prove two properties of the electromagnetic knots in empty space. First, that any standard radiation fields (i.e. satisfying E . B = 0) coincide locally with an electromagnetic knot. Second, that the electric and magnetic helicities of any knot are equal. These results can be used as a basis for a topological model of electromagnetism.
© 1997 Elsevier Science BV. We are grateful to Professors M.V. Berry, A. Dobado, A. Ibort, E. López, J.M. Montesinos, M. Soler and J.L. Vicent for discussions and encouragement and to Professor A. Tiemblo for hospitality to A.F.R. at the Instituto de Matemáticas y Física Fundamental, CSIC, Madrid.
Unesco subjects
[1] A.F. Rañada, J. Phys. A, 23 (1990), L815. [2] A.F. Rañada, J. Fhys. A, 25 (1992), 1621. [3] A.F. Rañada, J.L. Trueba, Phys. Lett. A, 202 (1995), 337. [4] A.F. Rañada, J.L. Trueba, Nature, 383 (1996), 32. [5] A.F. Rañada, in: Solitons and Applications, eds. V.G. Makhankov, V.K. Fedyanin and O.K. Pashaev (World Scientific, Singapore, 1990). [6] H.K. Moffatt, J. Fluid Mech., 35 (1969), 117. [7] A.F. Rañada, Eur. J. Phys., 13 (1992), 70. [8] G.E. Marsh, Force-Free Magnetic Fields (World Scientific, Singapore, 1996). [9] H. Hopf, Math. Ann., 104 (1931), 637. [10] R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, (Springer, New York, 1982). [11] A.M. Kamchatnov, Zh. Eksp. Teor. Fiz., 82 (1982), 117[Sov. Phys. JETP, 55 (1982), 69]. [12] G. Darboux, Bull. Sci. Math., (2), 6 (1982), 14. [13] S. Fritelli, S. Koshti, E. Newman and C. Rovelli, Phys. Rev. D, 49 (1994), 6883. [14] J.L. Trueba and A.F. Rañada, Eur. J. Phys., 17 (1996), 141. [15] A.F. Rañada, in: Fundamental Problems in Quantum Physics, eds. M. Ferrero and A. van der Merwe (Kluwer, Dordrecht, 1995). [16] G.N. Afanasiev and Yu. P. Stepanovsky, Nuovo Cimento A, 109 (1996), 271.