Initial field and energy flux in absorbing optical waveguides. II. Implications

Thumbnail Image
Full text at PDC
Publication Date
Lakshminarayanan, Vasudevan
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Optical Society of America
Google Scholar
Research Projects
Organizational Units
Journal Issue
We present here numerical estimates of the density and flux of energy based on physical parameters associated with the absorption properties of certain types of absorbing optical waveguides. These results are based on a theoretical formalism established previously for the initial field incident upon the entrance pupil of an absorbing optical waveguide. Based on these results, the mechanisms of confined energy transmission and possible cross talk between neighboring waveguides are discussed. Some comments on the behavior of Bessel functions with complex arguments are also included in the discussion.
© 1987 Optical Society of America. This work was supported in part by grant EY 03674 from the National Eye Institute, National Institutes of Health, Bethesda, Maryland. The research of M. L. Calvo was supported by a grant from the U.S.-Spain Joint Committee for Scientific and Technological Cooperation Program. We would like to thank J. M. Enoch for support and encouragement, Christina Vigil for preparing the manuscript, and an anonymous referee for pointing out a major numerical error.
1. M. L. Calvo, V. Lakshminarayanan, “Initial field and energy flux in absorbing optical waveguides. I. Theoretical formalism”, J. Opt. Soc. Am. A 4, 1037–1042 (1987). 2. R. Olshansky, “Propagation in glass optical waveguides”, Rev. Mod. Phys. 51, 341–357 (1979). 3. P. L. Mattern, L. M. Watkins, C. D. Skoog, J. R. Brandon, E. H. Bargis, “The effects of radiation on the absorption and luminescence of fiber optic waveguide and materials”,IEEE Trans. Nucl. Sci. NS-21, 81–95 (1974). 4. J. D. Crow, N. F. Borrelli, T. P. Seward, J. Chodak, “Lightguiding in photochromic glasses”, Appl. Opt. 14, 580–585 (1975). 5. J. M. Enoch, F. L. Tobey, “Waveguide properties of retinal receptors: techniques and observations”, in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), Chap. 5 and references therein. 6. F. I. Harosi, “Microspectrophotometry and optical phenomena: birefringence, dichroism and anomalous dispersion”, in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), Chap. 9 and references therein. 7. D. F. Mandoli, M. R. Briggs, “Fiber optic plant tissues: spectral dependence in dark-grown and green tissues”, Photochem. Photobiol. 39, 419–424 (1984). 8. M. Abramowitz, I. Stegun, eds., Handbook of Mathematical Functions, 9th ed. (Dover, New York, 1972), Chap. 11, Eq. (11.3.29) (with the following specifications: μ= V= 0, t= r, k=χ^0′, l=χ^0′*, z= R); see also H. Bateman, ed., Bateman Manuscript, Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vol. 2, p. 90. 9. D. Gloge, “The optical fiber as a transmission medium”, Rep. Prog. Phys. 42, 1777–1824 (1979). 10. D. G. Stavenga, “Derivation of photochrome absorption spectra from absorbance difference measurements”, Photochem. Photobiol. 21, 105–110 (1975). 11. R. F. Alvarez-Estrada, M. L. Calvo, “Inhomogeneous slab with analytic frequency dependent permittivity”, Opt. Acta 28, 1253–1272 (1981). 12. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1984), Chap. 13. 13. P. A. Liebman, “Birefringence, dichroism and rod outer segment structure”, in Photoreceptor Optics, A. W. Snyder, R. Menzel, eds. (Springer-Verlag, Berlin, 1975), pp. 199–214. 14. M. C. Cornwall, E. F. MacNichol, A. Fein, “Absorptance and spectral sensitivity measurements of rod photoreceptors of the tiger salamander”, Vision. Res. 24, 1651–1659 (1984). 15. See, for example, Ref. 12, Chap. 1 , Sec. 1.5. 16. P. McIntyre, “Cross talk in absorbing optical fibers”,J. Opt. Soc. Am. 65, 810–813 (1975). 17. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Part I, Sec. 6. 18. D. A. Pinnow, T. C. Rich, “Measurement of the absorption coefficient in fiber optical waveguides using calorimetric techniques”, Appl. Opt. 14, 1258–1259 (1975). 19. K. I. White, “A calorimetric method for the measurement of low optical absorption losses in optical communication fibres”, Opt. Quantum. Electron. 8, 73–75 (1976). 20. D. Chardon, S. J. Huard, “Absorption losses and thermal diffusivity of optical fibers investigated by photothermal method: theory and experiments”, Can. J. Phys. 61, 1334–1346 (1983). 21. See, for example, Ref. 8, p. 369, Eqs. (9.4.1), (9.4.3), (9.4.4), and (9.4.6). 22. J. M. Enoch, School of Optometry, University of California, Berkeley, California 94720 (personal communication, 1986). 23. R. Sammut, A. W. Snyder, “Contribution of unbound modes to light absorption in visual photoreceptors”,J. Opt. Soc. Am. 64, 1711–1714 (1974). 24. M. Abramowitz, I. Stegun, eds., Handbook of Mathematical Functions, 9th ed. (Dover, New York, 1972), Chap. 9, Sec. 9.4.