Initial field and energy flux in absorbing optical waveguides. I. Theoretical formalism

Thumbnail Image
Full text at PDC
Publication Date
Lakshminarayanan, Vasudevan
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Optical Society of America
Google Scholar
Research Projects
Organizational Units
Journal Issue
An exact formulation of the electromagnetic field striking an optical waveguide is presented and compared with the decomposition relationship used in the literature. The expression for the critical angle is derived as a natural consequence of this formulation. Equations for the total fraction of power confined within a waveguide are derived and analyzed for the special case of absorbing waveguides. An explicit expression is derived for the fraction of energy confined within a waveguide supporting two sets of modes.
© 1987 Optical Society of America. This work was supported in part by grant EY03674 from the National Eye Institute, National Institutes of Health, Bethesda, Md. M. L. Calvo was supported by a grant from the U.S.- Spain Joint Committee for Scientific and Technological Cooperation Program. We thank J. M. Enoch for support and encouragement.
1. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972). 2. B. R. Horowitz, “Theoretical considerations of the retinal receptor as a waveguide”, in Vertebrate Photoreceptor Optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 219–300. 3. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983). 4. A. W. Snyder, “Leaky-ray theory of optical waveguides of circular cross-section”, Appl. Phys. 4, 273–298 (1974). 5. A. W. Snyder, J. D. Love, “Attenuation coefficient for rays in graded fibers with absorbing cladding”, Electron. Lett. 12, 255–257 (1976). 6. K. F. Barrell, C. Pask, “The effect of cladding loss in graded index fibers”, Opt. Quantum Electron. 10, 223–231 (1978). 7. C. Pask, K. F. Barrell, “Photoreceptor optics. I. Introduction to formalism and excitation in a lens-photoreceptor system”, Biol. Cybern. 36, 1–8 (1980). 8. R. F. Alvarez-Estrada, M. L. Calvo, “Neutron fibres: a possible application of neutron optics”,J. Phys. D. 17, 475–502 (1984). 9. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. 1. 10. A. W. Snyder, “Excitation and scattering of modes on a dielectric or optical fiber”, IEEE Trans. Microwave Theory Tech. MTT-17, 1138–1144 (1969). 11. M. Abramowitz, I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965). 12. R. F. Alvarez-Estrada, M. L. Calvo, P. Juncos, “Scattering of TM waves by dielectric fibre: iterative and eikonal solutions”, Opt. Acta 27, 1367–1378 (1980). 13. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980). 14. G. Biernson, D. G. Kinsley, “Generalized plots of mode patterns in a cylindrical dielectric waveguide applied to retinal cones”, IEEE Trans. Microwave Theory Tech. MTT-13, 345–356 (1965). 15. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975). 16. P. McIntyre, “Cross-talk in absorbing optical fibers”,J. Opt. Soc. Am. 65, 810–813 (1975). 17. V. Lakshminarayanan, M. L. Calvo, “The initial field and energy flux in absorbing optical waveguides. II. Implications”, J. Opt. Soc. Am. A (submitted). 18. A. W. Snyder, C. Pask, “Waveguide modes and light absorption in photoreceptors”, Vision Res. 13, 2605–2608 (1973).