The δ̅ -approach to the dispersionless KP hierarchy

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing
Google Scholar
Research Projects
Organizational Units
Journal Issue
The dispersionless limit of the scalar nonlocal a-problem is derived. It is given by a special class of nonlinear first-order equations. A quasiclassical version of the partial derivative -dressing method is presented. It is shown that the algebraic formulation of dispersionless hierarchies can be expressed in terms of properties of Beltrami-type equations. The universal Whitham hierarchy and, in particular, the dispersionless KP hierarchy turn out to be rings of symmetries for the quasiclassical partial derivative -problem.
©2001 IOP Publishing Ltd. L Martínez Alonso is partially supported by CICYT proyecto PB98–0821.
Unesco subjects
[1] Lebedev D and Manin Y 1979 Phys. Lett. A 74 154–6 [2] Zakharov V E 1980 Func. Anal. Pril. 14 89–98 Zakharov V E 1981 Physica D 3 193–202 [3] Lax P D and Levermore C D 1983 Commun. Pure Appl. Math. 36 253–90 Lax P D and Levermore C D 1983 Commun. Pure Appl. Math. 36 571–93 Lax P D and Levermore C D 1983 Commun. Pure Appl. Math. 36 809– 30 [4] Krichever I M 1988 Func. Anal. Pril. 22 37–52 [5] Kodama Y 1988 Phys. Lett. A 129 223–6 [6] Dubrovin B A and Novikov S P 1989 Russ. Math. Surv. 44 35–124 [7] Takasaki K and Takebe T 1992 Int. J. Mod. Phys. A suppl 1B 889–922 [8] Krichever I M 1994 Commun. Pure Appl. Math. 47 437–75 [9] Ercolani N M et al (ed) 1994 Singular Limits of Dispersive Waves (Nato ASI Series B Phys. vol 320) (New York: Plenum) [10] Takasasi K and Takebe T 1995 Rev. Math. Phys. 7 743–808 [11] Carroll R and Kodama Y 1995 J. Phys. A: Math. Gen. 28 6373–87 [12] Jin S, Levermore C D and McLaughlin D W 1999 Commun. Pure Appl. Math. 52 613–54 [13] Kamvissis S, McLaughlin K T-R and Miller P D 2000 Semiclassical soliton emsembles for the focusing nonlinear Schrödinger equation Preprint nlin. SI/0012034 [14] Krichever I M 1992 Commun. Math. Phys. 143 415– 29 [15] Dubrovin B A 1992 Commun. Math. Phys. 145 195– 207 [16] Aoyama S and Kodama Y 1996 Commun. Math. Phys. 182 185–219 [17] Kodama Y 1997 The Whitham equations for optical communications: mathematical theory of NR2 Preprint solv-int/9709012 [18] Wiegmann P B and Zabrodin A 2000 Commun. Math. Phys. 213 523–38 [19] Mineev-Weinstein M, Wiegmann P B and Zabrodin A 2000 Phys. Rev. Lett. 84 5106–9 [20] Geogdzhaev V V 1987 Teor. Mat. Fiz. 73 255–63 [21] Zakharov V E and Manakov S V 1985 Funct. Anal. Appl. 19 89–101 [22] Zakharov V E 1990 Inverse Problems in Action ed P S Sabatier (Berlin: Springer) [23] Konopelchenko B G 1993 Solitons in Multidimensions (Singapore: World Scientific) [24] Bers L 1977 Bull. Am. Math. Soc. 83 1083–1100 [25] Ahlfors L V 1966 Lectures on Quasi-Conformal Mappings (Princeton, NJ: Van Nostrand-Reinhold) [26] Vekua I N 1962 Generalized Analytic Functions (Oxford: Pergamon)