Central orderings in fields of real meromorphic function germs

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
The paper deals with orderings in the field K(X0) of meromorphic function germs on an irreducible analytic germ X0⊂Rn0 of dimension d. It is inspired by the theory of central points of real algebraic varieties (the set of central points is the closure of the set of smooth points of maximal dimension). In the case of germs, the central points are replaced by curves or, more precisely, half branch germs (actually even C∞ branch germs); the dimension of a half branch germ is the dimension of the smallest analytic germ which contains this half germ. An order on K(X0) is said to be centered on a half branch c if the set of its positive elements contains the functions which are positive on c. If Ωe is the set of orders on K(X0) centered on a half branch of dimension e, it is proved that all Ωe (e=1,⋯,d) and Ω∖Ω∗ (with Ω∗=Ω1∪⋯∪Ωd) are dense in Ω. Various other results and applications are given.
ALONSO,M.E.; GAMBOA,J.M.; RUIZ,J.M.: On orderings in real surfaces. Preprint (1982) BLOOM,T.; RISLER,J.J.: Familles de courbes sur les germes d'espaces analytiques. Bull. Soc. Math. Fr., 105 (1977), 261–280 COSTE,M.; ROY,M.F.: La topologie du spectre réel. In Ordered fields and Real Algebraic Geometry. Contemporary Math., v.8. A.M.S. 1982 DUBOIS,D.W.: Second note on Artin's solution of Hilbert's 17th Problem. Order Spaces. Pac. J. Math., 97, n°2 (1981), 357–371 ELMAN,R.; LAM,T.Y.; WADSWORTH,A.R.: Orderings under field extensions. J. Reine Angew. Math., 306 (1979), 7–27 HIRONAKA,H.: Introduction to real-analytic sets and real-analytic maps. Institute Matematico L. Tonelli, Univ. di Pisa (1973) LASALLE,G.: Sur le théorème des zéros différentiables. In: Singularités d'applications différentiables. Lecture Notes, 535. Berlin-Heidelberg-New York: Springer 1975 ŁOJASIEWICZ,S.: Ensembles semi-analytiques. Lecture Notes (1965) at I.H.E.S., Bures-Sur-Yvette; reproduit n° A66. 765, Ecole Polytechnique, Paris NARASIMHAN,R.: Introduction to the theory of analytic spaces. Lecture Notes, 25. Berlin-Heidelberg-New York: Springer 1966 RISLER,J.J.: Le théorème des zéros en geometries algébrique et analytique réelles. Bull. Soc. Math. Fr., 104 (1976), 113–127 RISLER,J.J.: Sur la divisibilité des fonctions de classe Cr par les fonctions analytiques réelles. Bull. Soc. Math. Fr., 105 (1977), 97–112 RUIZ,J.M.: A separation lemma in real analytic geometry (1982) preprint TOUGERON,J.C.: Solutions d'un système d'équations analytiques réelles et applications. Ann. Inst. Fourier, 26, n°3 (1976), 109–135