A compactness result of Janson type for bilinear operators

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We establish a compactness interpolation result for bilinear operators of the type proved by Janson for bounded bilinear operators. We also give an application to compactness of convolution operators.
1] C. Bennet and R. Sharpley, Interpolation of Operators, Academic Press,Boston, 1988. [2] A. Benyi and T. Oh, ´ Smoothing of commutators for a H¨ormander classof bilinear pseudodifferential operators, J. Fourier Anal. Appl. 20 (2014)282–300. [3] A. Benyi and R.H. Torres, Compact bilinear operators and commutators,Proc. Amer. Math. Soc. 141 (2013) 3609–3621. [4] J. Bergh and J. L¨ofstr¨om, Interpolation Spaces. An Introduction, Springer,Berlin, 1976. [5] B.F. Besoy and F. Cobos, Interpolation of the measure of non-compactness of bilinear operators among quasi-Banach spaces, J. Approx. Theory 243 (2019) 25–44. [6] A.P. Calderon, Intermediate spaces and interpolation, the complex method,Studia Math. 24 (1964) 113–190. [7] F. Cobos, L.M. Fern´andez-Cabrera and A. Martinez, Interpolation of compact bilinear operators among quasi-Banach spaces and applications, Math.Nachr. 291 (2018) 2168–2187. [8] F. Cobos, L.M. Fern´andez-Cabrera and A. Martinez, On compactness results of Lions-Peetre type for bilinear operators, Nonlinear Anal. 199 (2020)111951. [9] F. Cobos and J. Peetre, Interpolation of compactness using AronszajnGagliardo functors, Israel J. Math. 68 (1989) 220–240. [10] F. Cobos, T. Kuhn and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106 (1992) 274–313 [11] D.E. Edmunds and W.D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987. [12] L.M. Fernandez-Cabrera and A. Mart´ınez, On interpolation properties of compact bilinear operators, Math. Nachr. 290 (2017) 1663–1677. [13] L.M. Fern´andez-Cabrera and A. Mart´ınez, Real interpolation of compact bilinear operators, J. Fourier Anal. Appl. 24 (2018) 1181–1203. [14] D.L. Fernandez and E.B. da Silva, Interpolation of bilinear operators and compactness, Nonlinear Anal. 73 (2010) 526–537. [15] M.A. Fugarolas and F. Cobos, On Schauder bases in the Lorentz operator ideal, J. Math. Anal. Appl. 95 (1983) 235–242. [16] I. C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, R.I., 1969. [17] G. Hu, Compactness of the commutator of bilinear Fourier multiplier operator, Taiwanese J. Math. 18 (2014) 661–675. [18] R.A. Hunt, On L(p, q) spaces, Enseign. Math. 12 (1966) 249–276. [19] S. Janson, On interpolation of multilinear operators, in: Function spaces and Applications, Springer Lect. Notes in Math. 1302 (1988) 290–302. [20] G.E. Karadzhov, The interpolation method of ”means” for quasinormedspaces, Doklady Acad. Nauk SSSR 209 (1973) 33-36. [21] H. Konig, Interpolation of operator ideals with an application to eigenvalue distribution problems, Math. Ann. 233 (1978) 35–48. [22] H. Konig, Eigenvalue distribution of compact operators, Birkhauser, Basel, 1986. [23] G. Kothe, Topological Vector Spaces, Vol. I, Springer, New York, 1969. [24] J.L. Lions and J. Peetre, Sur une classe d´espaces d´interpolation, Inst. Hautes Etudes Sci. Publ. Math. 19 (1964) 5–68. [25] M. Masty lo and E.B. Silva, Interpolation of the measure of non-compactness of bilinear operators, Trans. Amer. Math. Soc. 370 (2018) 8979–8997. [26] R. O’Neil, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963) 129–142. [27] A. Persson, Compact linear mappings between interpolation spaces, Ark. Mat. 5 (1964) 215–219. [28] A. Pietsch, Eigenvalues and s-number, Cambridge University Press, Cambridge, 1987. [29] M. F. Teixeira and D. E. Edmunds, Interpolation theory and measures of non-compactness, Math. Nachr. 104 (1981) 129–135. [30] H. Triebel, Uber die verteilung der approximationszahlen kompakter opera toren in Sobolev-Besov-Raumen, Invent. Math. 4 (1967) 275–293. [31] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,North-Holland, Amsterdam, 1978. [32] H. Triebel, Theory of Function Spaces III, Birkhauser, Basel, 2006. [33] H. Triebel, Function Spaces and Wavelets on Domains, European Math.Soc. Publishing House, Zurich, 2008.