Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Classical vs. non-Archimedean analysis: an approach via algebraic genericity

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Citations
Google Scholar

Citation

Abstract

In this paper, we show new results and improvements of the non-Archimedean counterpart of classical analysis in the theory of lineability. Besides analyzing the algebraic genericity of sets of functions having properties regarding continuity, discontinuity, Lipschitzianity, differentiability and analyticity, we also study the lineability of sets of sequences having properties concerning boundedness and convergence. In particular we show (among several other results) the algebraic genericity of: (i) functions that do not satisfy Liouville’s theorem, (ii) sequences that do not satisfy the classical theorem of Cèsaro, or (iii) functionals that do not satisfy the classical Hahn–Banach theorem.

Research Projects

Organizational Units

Journal Issue

Description

CRUE-CSIC (Acuerdos Transformativos 2022)

Keywords

Collections