Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Model Selection in a Composite Likelihood Framework Based on Density Power Divergence

Loading...
Thumbnail Image

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

https://www.mdpi.com/
Citations
Google Scholar

Citation

Abstract

This paper presents a model selection criterion in a composite likelihood framework based on density power divergence measures and in the composite minimum density power divergence estimators, which depends on an tuning parameter α. After introducing such a criterion, some asymptotic properties are established. We present a simulation study and two numerical examples in order to point out the robustness properties of the introduced model selection criterion.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections