Contaminación bacteriana de un nuevo cepillo de dientes a base de poliuterano termoplástico. Un estudio cruzado en voluntarios sanos.

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Antecedentes: El crecimiento, contaminación y retención bacteriana en los cepillos dentales se ha estudiado a lo largo del tiempo de acuerdo a su diseño, materiales utilizados en su producción y métodos de desinfección. Además, la retención de bacterias en los cepillos dentales podría asociarse a infecciones oportunistas. Objetivo: Evaluar la contaminación bacteriana de un nuevo cepillo dental a base de poliuretano termoplástico (TPU) con un diseño novedoso, en comparación con un cepillo dental convencional con cerdas de nylon, tras un uso único supervisado y tras una semana de uso no supervisado. Material y métodos: Se diseñó un modelo de estudio cruzado en voluntarios sanos. Se establecieron dos tiempos de cepillado (un cepillado único supervisado durante 40 segundos y un periodo de cepillado de una semana, no supervisado).Todos los participantes recibieron las instrucciones adecuadas para el uso del nuevo cepillo de dientes de TPU y fueron controlados durante el cepillado supervisado. El cepillo se recogió para su evaluación microbiológica. Tras el cepillado supervisado los participantes recibieron un nuevo cepillo idéntico al utilizado para su uso durante una semana y, transcurrido este periodo de uso, el cepillo se recogió para una nueva evaluación microbiológica. Después de un periodo de aclarado de una semana, los participantes realizaron el mismo procedimiento para el cepillo convencional con cerdas de nylon. Los cabezales de los cepillos de dientes fueron liberados del mango y se colocaron en tubos Falcon con 10 mL de solución salina de fosfato tamponada. Estos tubos fueron sonicados y posteriormente se extrajo 1 mL de cada una de las muestras. Para detectar y cuantificar el ADN bacteriano total se utilizó el método de reacción en cadena de la polimerasa cuantitativa (qPCR). Los datos obtenidos se analizaron mediante t-test. Resultados: Se analizaron un total de 96 cabezales de cepillos de dientes (48 para el cepillo control y 48 para el cepillo test). Los resultados del presente estudio demostraron que la contaminación bacteriana, tras una semana de uso, fue significativamente mayor en el cepillo control, que en el cepillo test evaluado (p=0,046). No se encontraron diferencias estadísticamente significativas (p=0,792) entre ambos cepillos de dientes en cuanto al recuento de bacterias contenidas en los cabezales de los cepillos tras un uso único supervisado. De manera similar, el análisis del recuento bacteriano, teniendo en cuenta la superficie potencial susceptible de ser colonizada que presenta cada cepillo, no reveló diferencias estadísticamente significativas tras uso único supervisado (p=0,885), pero sí se observó una tendencia tras el uso durante una semana (p=0,092). Conclusión: El cepillo dental test, por su nuevo diseño y material, presenta menos contaminación bacteriana cuando se usa de manera prolongada en comparación con el cepillo dental control. Cuando ambos cepillos son usados una única vez (uso supervisado), no se observaron diferencias en cuanto a la contaminación bacteriana entre ellos.
Background: Bacterial growth, contamination and retention on toothbrushes has been studied over time according to their design, materials used in their production and disinfection methods. In addition, bacterial retention on toothbrushes may be associated with opportunistic infections. Objective: To evaluate the bacterial contamination of a new thermoplastic polyurethane (TPU) based toothbrush with a novel design, compared to a conventional toothbrush with nylon bristles, after a single supervised use and after one week of use. Material and methods: A crossover study model was designed in healthy volunteers. Two brushing times were established (a single supervised brushing for 40 seconds and a one-week unsupervised brushing period). All participants received proper instructions for the use of the new TPU toothbrush and were monitored during supervised brushing. The toothbrush was collected for microbiological evaluation. After the single brushing, participants received a new toothbrush, identical to the one used in this step. They were asked to return the brushes after one week of usage for a new microbial evaluation. After a one-week washout period, participants performed the same procedure for the conventional nylon bristle brush. The toothbrush heads were released from the handle and placed in Falcon tubes containing 10 mL of phosphate-buffered saline. These tubes were sonicated and 1mL of each sample was subsequently extracted. The quantitative polymerase chain reaction (qPCR) method was used to detect and quantify total bacterial DNA. The data obtained were analyzed using t-test.Results: A total of 96 toothbrush heads were analyzed (48 for the control toothbrush and 48 for the test toothbrush). The results of the present study showed that bacterial contamination, after one week of use, was significantly higher on the control toothbrush than on the test toothbrush (p=0.046). No statistically significant differences (p=0.792) were found between the two toothbrushes in terms of bacterial counts on the toothbrush heads after a single supervised use. Similarly, analysis of bacterial counts, considering the potential surface area of each toothbrush susceptible to colonization, revealed no statistically significant differences after single supervised use (p=0.885), but a trend was observed after one-week use (p=0.092).Conclusion: The test toothbrush, due to its new design and material, showed less bacterial contamination when used for one week, when compared to the conventional toothbrush. When both toothbrushes are used only once (supervised use), no differences in bacterial contamination were observed
Basman, A., Peker, I., Akca, G., Alkurt, M. T., Sarikir, C., & Celik, I. (2015).Evaluation of toothbrush disinfection via different methods. Brazilian Oral Research, 30,S1806-83242016000100203. Bochud, P. Y., Calandra, T., & Francioli, P. (1994). Bacteremia due to viridansstreptococci in neutropenic patients: A review. The American Journal of Medicine, 97(3), 256-264. Boylan, R., Li, Y., Simeonova, L., Sherwin, G., Kreismann, J., Craig, R. G., Ship, J.A., & McCutcheon, J. A. (2008). Reduction in bacterial contamination of toothbrushes using the Violight ultraviolet light activated toothbrush sanitizer. American Journal of Dentistry, 21(5), 313-317. Bunetel, L., Tricot-Doleux, S., Agnani, G., & Bonnaure-Mallet, M. (2000). In vitro evaluation of the retention of three species of pathogenic microorganisms by three different types of toothbrush: In vitro retention of microorganisms by toothbrushes. Oral Microbiology and Immunology, 15(5), 313-316. Caudry, S. D., Klitorinos, A., & Chan, E. C. (1995). Contaminated toothbrushes and their disinfection. Journal (Canadian Dental Association), 61(6), 511-516. Choo, A., Delac, D., & Messer, L. (2001). Oral Hygiene Measures and Promotion:Review and Considerations. Australian Dental Journal, 46, 166-173. Claydon, N., & Addy, M. (1996). Comparative single-use plaque removal by mtoothbrushes of different designs. Journal of Clinical Periodontology, 23(12), 1112-1116. Do Nascimento, C., Scarabel, T. T., Miani, P. K., Watanabe, E., & Pedrazzi, V. (2012). In vitro evaluation of the microbial contamination on new toothbrushes: A preliminary study. Microscopy Research and Technique, 75(1), 42-45. Durgesh, P., Sridharan, S., Prabhu, S. K., Rao, R., Rudresh, V., & H. Bangalore, D.(2020). Microbial contamination and plaque scores of nanogold-coated toothbrush.International Journal of Dental Hygiene, 18(3), 278-284. Glass, R. T., & Jensen, H. G. (1988). More on the contaminated toothbrush: The viral story. Quintessence International (Berlin, Germany: 1985), 19(10), 713-716. Karibasappa, G., Nagesh, L., & Sujatha, B. (2011). Assessment of microbial contamination of toothbrush head: An in vitro study. Indian Journal of Dental Research, 22(1), 2. Komiyama, E. Y., Back-Brito, G. N., Balducci, I., & Koga-Ito, C. Y. (2010).Evaluation of alternative methods for the disinfection of toothbrushes. Brazilian Oral Research, 24, 28-33. Kornman, K. S., Crane, A., Wang, H.-Y., Giovlne, F. S. di, Newman, M. G., Pirk, F. W., Wilson, T. G., Higginbottom, F. L., & Duff, G. W. (1997). The interleukin-1 genotype as a severity factor in adult periodontal disease. Journal of Clinical Periodontology, 24(1), 72-77. Liu, M., Liu, T., Chen, X., Yang, J., Deng, J., He, W., Zhang, X., Lei, Q., Hu, X., Luo, G., & Wu, J. (2018). Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. Journal of Nanobiotechnology, 16(1), 89. Löe, H. (2000). Oral hygiene in the prevention of caries and periodontal disease. International Dental Journal, 50(3), 129-139. Marcenes, W., Kassebaum, N. J., Bernabé, E., Flaxman, A., Naghavi, M., Lopez, A., & Murray, C. J. L. (2013). Global Burden of Oral Conditions in 1990-2010: A Systematic Analysis. Journal of Dental Research, 92(7), 592-597. Morris, D. W., Goldschmidt, M., & Keene, H. (2014). Microbial Contamination of Power Toothbrushes: A Comparison of Solid-Head Versus Hollow-Head Designs. Journal of Dental Hygiene, 88(4), 237-242. Nieri, M., Giani, M., Pagliaro, U., Picciullo, A., Franceschi, D., & Rotundo, R. (2013). Efficacy and preference of manual toothbrushes: A randomised, single blind, controlled trial. European Journal of Oral Implantology, 6(2), 181-188. Papapanou, P. N., Sanz, M., Buduneli, N., Dietrich, T., Feres, M., Fine, D. H., Flemmig, T. F., Garcia, R., Giannobile, W. V., Graziani, F., Greenwell, H., Herrera, D., Kao, R. T., Kebschull, M., Kinane, D. F., Kirkwood, K. L., Kocher, T., Kornman, K. S., Kumar, P. S., … Tonetti, M. S. (2018). Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions: Classification and case definitions for periodontitis. Journal of Periodontology, 89, S173-S182. Pitchika, V., Pink, C., Völzke, H., Welk, A., Kocher, T., & Holtfreter, B. (2019). Long-term impact of powered toothbrush on oral health: 11-year cohort study. Journal of Clinical Periodontology, 46(7), 713-722. Svanberg, M. (1978). Contamination of toothpaste and toothbrush by Streptococcus mutans. Scandinavian Journal of Dental Research, 86(5), 412-414. Terézhalmy, G., Biesbrock, A., Walters, P., Grender, J., & Bartizek, R. (2008).Clinical evaluation of brushing time and plaque removal potential of two manual toothbrushes. International Journal of Dental Hygiene, 6(4), 321-327. Tonetti, M. S., Eickholz, P., Loos, B. G., Papapanou, P., van der Velden, U., Armitage, G., Bouchard, P., Deinzer, R., Dietrich, T., Hughes, F., Kocher, T., Lang, N. P., Lopez, R., Needleman, I., Newton, T., Nibali, L., Pretzl, B., Ramseier, C., SanzSanchez, I., … Suvan, J. E. (2015). Principles in prevention of periodontal diseases: Consensus report of group 1 of the 11 th European Workshop on Periodontology on effective prevention of periodontal and peri-implant diseases. Journal of Clinical Periodontology, 42, S5-S11. Unkel, J. H., Fenton, S. J., Hobbs, G., & Frere, C. L. (1995). Toothbrushing ability is related to age in children. ASDC Journal of Dentistry for Children, 62(5), 346-348. Wainwright, J., & Sheiham, A. (2014). An analysis of methods of toothbrushing recommended by dental associations, toothpaste and toothbrush companies and in dental texts. British Dental Journal, 217(3), E5-E5. van der Weijden, F., & Slot, D. E. (2011). Oral hygiene in the prevention of periodontal diseases: The evidence. Periodontology 2000, 55(1), 104-123. Wetzel, W.-E., Schaumburg, C., Ansari, F., Kroeger, T., & Sziegoleit, A. (2005). Microbial contamination of toothbrushes with different principles of filament anchoring. Journal of the American Dental Association (1939), 136(6), 758-765; quiz 806.