Person:
Fernández Pérez, Luis Antonio

Loading...
Profile Picture
First Name
Luis Antonio
Last Name
Fernández Pérez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física Teórica
Area
Física Teórica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 31
  • Item
    Ianus: an adaptive FPGA computer
    (Computing in science & engineering, 2006) Fernández Pérez, Luis Antonio; Martín Mayor, Víctor; Muñoz Sudupe, Antonio; otros, ...
    Dedicated machines designed for specific computational algorithms can outperform conventional computers by several orders of magnitude. In this note we describe Ianus, a new generation FPGA based machine and its basic features: hardware integration and wide reprogrammability. Our goal is to build a machine that can fully exploit the performance potential of new generation FPGA devices. We also plan a software platform which simplifies its programming, in order to extend its intended range of application to a wide class of interesting and computationally demanding problems. The decision to develop a dedicated processor is a complex one, involving careful assessment of its performance lead, during its expected lifetime, over traditional computers, taking into account their performance increase, as predicted by Moore’s law. We discuss this point in detail.
  • Item
    Off-equilibrium fluctuation-dissipation relations in the 3d Ising spin glass in a magnetic field
    (Physical review B, 2003) Cruz, A.; Fernández Pérez, Luis Antonio; Jiménez, S.; Ruiz Lorenzo, J. J.; Tarancón, A.
    We study the fluctuation-dissipation relations for a three dimensional Ising spin glass in a magnetic field both in the high temperature phase as well as in the low temperature one. In the region of times simulated we have found that our results support a picture of the low temperature phase with broken replica symmetry, but a droplet behavior cannot be completely excluded.
  • Item
    Critical behavior in the site-diluted three-dimensional three-state Potts model
    (Physical review B, 2000) Ballesteros, H. G.; Fernández Pérez, Luis Antonio; Martín Mayor, Víctor; Muñoz Sudupe, Antonio; Parisi, G.; Ruiz Lorenzo, J. J.
    We have studied numerically the effect of quenched site dilution on a weak first-order phase transition in three dimensions. We have simulated the site diluted three-states Potts model studying in detail the secondorder region of its phase diagram. We have found that the n exponent is compatible with the one of the three-dimensional diluted Ising model, whereas the h exponent is definitely different.
  • Item
    First Order Phase Transition in a 3D disordered system
    (AIP conference proceedings: large scale simulations of complex systems, condensed matter and fusion plasma, 2008) Fernández Pérez, Luis Antonio; Gordillo Guerrero, A.; Martín Mayor, Víctor; Ruiz Lorenzo, J. J.
    We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity.
  • Item
    Janus: an FPGA-based system for high-performance scientific computing
    (Computing in science & engineering, 2009) Fernández Pérez, Luis Antonio; Martín Mayor, Víctor; Muñoz Sudupe, Antonio; Yllanes, D.; otros, ...
    This paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperfoms high-end PCs by a factor ≈1000. We also discuss the role of JANUS on other classes of scientific applications.
  • Item
    Phase diagram of a polydisperse soft-spheres model for liquids and colloids
    (Physical review letters, 2007) Fernández Pérez, Luis Antonio; Martín Mayor, Víctor; Verrocchio, P.
    The phase diagram of soft spheres with size dispersion is studied by means of an optimized Monte Carlo algorithm which allows us to equilibrate below the kinetic glass transition for all size distributions. The system ubiquitously undergoes a first-order freezing transition. While for a small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.
  • Item
    Finite size effects in the specific heat of glass-formers
    (AIP conference proceedings: flow dynamcis, 2006) Fernández Pérez, Luis Antonio; Martín Mayor, Víctor; Verrocchio, P.
    We report clear finite size effects in the specific heat and in the relaxation times of a model glass former at temperatures considerably smaller than the Mode Coupling transition. A crucial ingredient to reach this result is a new Monte Carlo algorithm which allows us to reduce the relaxation time by two order of magnitudes. These effects signal the existence of a large correlation length in static quantities.
  • Item
    Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat
    (Physical review E, 2009) Fernández Pérez, Luis Antonio; Gordillo Guerrero, A.; Martín Mayor, Víctor; Ruiz Lorenzo, J. J.
    A microcanonical finite-size ansatz in terms of quantities measurable in a finite lattice allows extending phenomenological renormalization the so-called quotients method to the microcanonical ensemble. The ansatz is tested numerically in two models where the canonical specific heat diverges at criticality, thus implying Fisher renormalization of the critical exponents: the three-dimensional ferromagnetic Ising model and the two-dimensional four-state Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows simulating systems as large as L = 1024 Potts or L= 128 (Ising). The quotients method provides accurate determinations of the anomalous dimension, η, and of the (Fisher-renormalized) thermal ν exponent. While in the Ising model the numerical agreement with our theoretical expectations is very good, in the Potts case, we need to carefully incorporate logarithmic corrections to the microcanonical ansatz in order to rationalize our data.
  • Item
    Mean-value identities as an opportunity for Monte Carlo error reduction
    (Physical review E, 2009) Fernández Pérez, Luis Antonio; Martín Mayor, Víctor
    In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number generators. We point out that they can be further exploited as control variates to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the twodimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.
  • Item
    Hybrid Monte Carlo algorithm for the double exchange model
    (Nuclear physics B, 2001) Alonso, J. L.; Fernández Pérez, Luis Antonio; Guinea, F; Laliena, V.; Martín Mayor, Víctor
    The Hybrid Monte Carlo algorithm is adapted to the simulation of a system of classical degrees of freedom coupled to non self-interacting lattices fermions. The diagonalization of the Hamiltonian matrix is avoided by introducing a path-integral formulation of the problem, in d + 1 Euclidean space–time. A perfect action formulation allows to work on the continuum Euclidean time, without need for a Trotter–Suzuki extrapolation. To demonstrate the feasibility of the method we study the Double Exchange Model in three dimensions. The complexity of the algorithm grows only as the system volume, allowing to simulate in lattices as large as 163 on a personal computer. We conclude that the second order paramagnetic–ferromagnetic phase transition of Double Exchange Materials close to half-filling belongs to the Universality Class of the three-dimensional classical Heisenberg model.