Finite size effects in the specific heat of glass-formers

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
We report clear finite size effects in the specific heat and in the relaxation times of a model glass former at temperatures considerably smaller than the Mode Coupling transition. A crucial ingredient to reach this result is a new Monte Carlo algorithm which allows us to reduce the relaxation time by two order of magnitudes. These effects signal the existence of a large correlation length in static quantities.
© 2006 American Institute of Physics. International Conference on Flow Dynamics (2. 2006. Sendai, Japan). We thank G. Biroli for pointing out that the random first order transition picture may explain finite size effects in the specific heat. P.V. was supported by the EC (contract MCFI-2002-01262). We were partly supported by MEC (Spain), through contracts BFM2003-08532, FIS2004- 05073 and FPA2004-02602. The total CPU time devoted to the simulation (carried out at BIFI PC clusters) amounts to 10 years of 3 GHz Pentium IV.
Unesco subjects
1. L. Chayes, V. J. Emery, S. A. Kivelson, Z. Nussinov, G. Tarjus, Physica A Statistical Mechanics and its Applications 225, 129–153 (1996). 2. C. Donati, S. Franz, G. Parisi, S. C. Glotzer, J. Non-Crys. Sol. 307, 215–224 (2002). 3. H. E. Castillo, C. Chamon, L. F. Cugliandolo, J. L. Iguain, M. P. Kennett, Phys. Rev. B, 68, 134442–1–134442–41 (2003). 4. G. Biroli, J.-P. Bouchaud, Europhys. Lett., 67, 21–27 (2004). 5. S. Whitelam, L. Berthier, J. P. Garrahan, Phys. Rev. Lett., 92, 185705–1–185705–4 (2004). 6. P. G. Debenedetti, Metastable Liquids, Princeton University Press, 1997. 7. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillian, S. W. Martín, J. Appl. Phys., 88, 3133–3156 (2000). 8. P. G. Debenedetti, F. H. Stillinger, Nature, 410, 259–267 (2001). 9. J. Z. Justin, Quantum Field Theory and Critical Phenomena, Oxford University Press, 2002. 10. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge University Press, Cambridge, 1996. 11. D. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, World Scientific Singapore, in press, 2005. 12. L. Berthier, Phys. Rev. Lett., 91, 055701–1–055701–4 (2003). 13. W. Götze, L. Sjögren, Rep. Prog. Phys., 55, 241–336 (1992). 14. T. S. Grigera, G. Parisi, Phys. Rev. E, 63, 045102–1-045102–4 (2001). 15. A. D. Sokal, in Functional Integration: Basics and Applications, eds. C. DeWitt-Morette, P. Cartier and A. Folacci, Plenum, New York, 1997. 16. C. C. Yu, H. M. Carruzzo, Phys. Rev. E, 69, 051201–1–051201–10 (2004). 17. L. Berthier, Phys. Rev. E, 69, 020201–1–020201–4 (2004). 18. N. Lacevic, F. W. Starr, T. B. SchrÃÿder, S. C. Glotzer, J. Chem. Phys., 119, 7372–7387 (2003). 19. K. Kim, R. Yamamoto, Phys. Rev. E, 61, R41–R44 (2000). 20. M. D. Ediger, Annu. Rev. Phys. Chem., 51, 99–128 (2000). 21. E. V. Russell, N. E. Israeloff, Nature, 408, 695–698 (2000). 22. N. O. Birge, S. R. Nagel, Phys. Rev. Lett., 54, 2674–2677 (1985). 23. D. S. Fryer, et al., Macromolecules, 34, 5627 (2001). 24. D. Morineau, Y. Xia, C. Alba-Simionesco, J. Chem. Phys., 117, 8966–8972 (2002). 25. T. Kirkpatrick, D. Thirumalai, P. Wolynes, Phys. Rev. A, 40, 1045–1054 (1989). 26. G. Biroli, J.-P. Bouchaud, J. Chem. Phys., 121, 7347–7354 (2004). 27. L. A. Fernández, V. Martín-Mayor, P. Verrocchio, preprint condmat 0504327 (2005).