Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Finite size effects in the specific heat of glass-formers

dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorVerrocchio, P.
dc.date.accessioned2023-06-20T11:17:36Z
dc.date.available2023-06-20T11:17:36Z
dc.date.issued2006
dc.description© 2006 American Institute of Physics. International Conference on Flow Dynamics (2. 2006. Sendai, Japan). We thank G. Biroli for pointing out that the random first order transition picture may explain finite size effects in the specific heat. P.V. was supported by the EC (contract MCFI-2002-01262). We were partly supported by MEC (Spain), through contracts BFM2003-08532, FIS2004- 05073 and FPA2004-02602. The total CPU time devoted to the simulation (carried out at BIFI PC clusters) amounts to 10 years of 3 GHz Pentium IV.
dc.description.abstractWe report clear finite size effects in the specific heat and in the relaxation times of a model glass former at temperatures considerably smaller than the Mode Coupling transition. A crucial ingredient to reach this result is a new Monte Carlo algorithm which allows us to reduce the relaxation time by two order of magnitudes. These effects signal the existence of a large correlation length in static quantities.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEC
dc.description.sponsorshipMEC (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38400
dc.identifier.doi10.1063/1.2204473
dc.identifier.issn0094-243x
dc.identifier.officialurlhttp://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2204473
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.relatedurlhttp://arxiv.org/abs/cond-mat/0512395v1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51925
dc.journal.titleAIP conference proceedings: flow dynamcis
dc.language.isoeng
dc.page.final133
dc.page.initial128
dc.publisherAmerican Institute of Physics
dc.relation.projectIDMCFI-2002-01262
dc.relation.projectIDBFM2003-08532
dc.relation.projectIDFIS2004- 05073
dc.relation.projectIDFPA2004-02602
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.cdu51-73
dc.subject.keywordSpatially heterogeneous dynamics
dc.subject.keywordSupercooled liquids
dc.subject.keywordTransition
dc.subject.keywordLength.
dc.subject.ucmFísica (Física)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco22 Física
dc.titleFinite size effects in the specific heat of glass-formers
dc.typejournal article
dc.volume.number832
dcterms.references1. L. Chayes, V. J. Emery, S. A. Kivelson, Z. Nussinov, G. Tarjus, Physica A Statistical Mechanics and its Applications 225, 129–153 (1996). 2. C. Donati, S. Franz, G. Parisi, S. C. Glotzer, J. Non-Crys. Sol. 307, 215–224 (2002). 3. H. E. Castillo, C. Chamon, L. F. Cugliandolo, J. L. Iguain, M. P. Kennett, Phys. Rev. B, 68, 134442–1–134442–41 (2003). 4. G. Biroli, J.-P. Bouchaud, Europhys. Lett., 67, 21–27 (2004). 5. S. Whitelam, L. Berthier, J. P. Garrahan, Phys. Rev. Lett., 92, 185705–1–185705–4 (2004). 6. P. G. Debenedetti, Metastable Liquids, Princeton University Press, 1997. 7. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillian, S. W. Martín, J. Appl. Phys., 88, 3133–3156 (2000). 8. P. G. Debenedetti, F. H. Stillinger, Nature, 410, 259–267 (2001). 9. J. Z. Justin, Quantum Field Theory and Critical Phenomena, Oxford University Press, 2002. 10. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge University Press, Cambridge, 1996. 11. D. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, World Scientific Singapore, in press, 2005. 12. L. Berthier, Phys. Rev. Lett., 91, 055701–1–055701–4 (2003). 13. W. Götze, L. Sjögren, Rep. Prog. Phys., 55, 241–336 (1992). 14. T. S. Grigera, G. Parisi, Phys. Rev. E, 63, 045102–1-045102–4 (2001). 15. A. D. Sokal, in Functional Integration: Basics and Applications, eds. C. DeWitt-Morette, P. Cartier and A. Folacci, Plenum, New York, 1997. 16. C. C. Yu, H. M. Carruzzo, Phys. Rev. E, 69, 051201–1–051201–10 (2004). 17. L. Berthier, Phys. Rev. E, 69, 020201–1–020201–4 (2004). 18. N. Lacevic, F. W. Starr, T. B. SchrÃÿder, S. C. Glotzer, J. Chem. Phys., 119, 7372–7387 (2003). 19. K. Kim, R. Yamamoto, Phys. Rev. E, 61, R41–R44 (2000). 20. M. D. Ediger, Annu. Rev. Phys. Chem., 51, 99–128 (2000). 21. E. V. Russell, N. E. Israeloff, Nature, 408, 695–698 (2000). 22. N. O. Birge, S. R. Nagel, Phys. Rev. Lett., 54, 2674–2677 (1985). 23. D. S. Fryer, et al., Macromolecules, 34, 5627 (2001). 24. D. Morineau, Y. Xia, C. Alba-Simionesco, J. Chem. Phys., 117, 8966–8972 (2002). 25. T. Kirkpatrick, D. Thirumalai, P. Wolynes, Phys. Rev. A, 40, 1045–1054 (1989). 26. G. Biroli, J.-P. Bouchaud, J. Chem. Phys., 121, 7347–7354 (2004). 27. L. A. Fernández, V. Martín-Mayor, P. Verrocchio, preprint condmat 0504327 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezPérezLuisAntonio82LIBRE PREPRINT.pdf
Size:
148.07 KB
Format:
Adobe Portable Document Format

Collections