Person:
Jannes, Gil

Loading...
Profile Picture
First Name
Gil
Last Name
Jannes
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Económicas y Empresariales
Department
Economía Financiera, Actuarial y Estadística
Area
Estadística e Investigación Operativa
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    The trans-Planckian problem as a guiding principle
    (Journal of high energy physics, 2011) Barbado, L. C.; Barceló, C.; Garay Elizondo, Luis Javier; Jannes, Gil
    We use the avoidance of the trans-Planckian problem of Hawking radiation as a guiding principle in searching for a compelling scenario for the evaporation of black holes or black-hole-like objects. We argue that there exist only three possible scenarios, depending on whether the classical notion of long-lived horizon is preserved by high-energy physics and on whether the dark and compact astrophysical objects that we observe have long-lived horizons in the first place. Along the way, we find that i) a theory with high-energy superluminal signalling and a long-lived trapping horizon would be extremely unstable in astrophysical terms and that i i) stellar pulsations of objects hovering right outside but extremely close to their gravitational radius can result in a mechanism for Hawking-like emission.
  • Item
    Quantum non-gravity and stellar collapse
    (Foundations of physics, 2011) Barceló, Carlos; Garay Elizondo, Luis Javier; Jannes, Gil
    Observational indications combined with analyses of analogue and emergent gravity in condensed matter systems support the possibility that there might be two distinct energy scales related to quantum gravity: the scale that sets the onset of quantum gravitational effects E-B ( related to the Planck scale) and the much higher scale E-L signalling the breaking of Lorentz symmetry. We suggest a natural interpretation for these two scales: E-L is the energy scale below which a special relativistic spacetime emerges, E-B is the scale below which this spacetime geometry becomes curved. This implies that the first 'quantum' gravitational effect around E-B could simply be that gravity is progressively switched off, leaving an effective Minkowski quantum field theory up to much higher energies of the order of E-L. This scenario may have important consequences for gravitational collapse, inasmuch as it opens up new possibilities for the final state of stellar collapse other than an evaporating black hole.