The trans-Planckian problem as a guiding principle

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Int School Advanced Studies
Google Scholar
Research Projects
Organizational Units
Journal Issue
We use the avoidance of the trans-Planckian problem of Hawking radiation as a guiding principle in searching for a compelling scenario for the evaporation of black holes or black-hole-like objects. We argue that there exist only three possible scenarios, depending on whether the classical notion of long-lived horizon is preserved by high-energy physics and on whether the dark and compact astrophysical objects that we observe have long-lived horizons in the first place. Along the way, we find that i) a theory with high-energy superluminal signalling and a long-lived trapping horizon would be extremely unstable in astrophysical terms and that i i) stellar pulsations of objects hovering right outside but extremely close to their gravitational radius can result in a mechanism for Hawking-like emission.
© Int School Advanced Studies. The authors want to thank Renaud Parentani, Stefano Finazzi, Stefano Liberati, Iacopo Carusotto, Grigory Volovik and Matt Visser for illuminating discussions. Financial support was provided by the Spanish MICINN through the projects FIS2008-06078-C03-01 and FIS2008- 06078-C03-03 and by the Junta de Andalucía through the project FQM219. G.J. is supported by a FECYT postdoctoral mobility contract of the Spanish MEC/MICINN, and also acknowledges the Academy of Finland (Centers of Excellence Programme 2006- 2011, grant 218211) and the EU 7th Framework Programme (FP7/2007-2013, grant 228464 Microkelvin).
Unesco subjects
[1] S. W. Hawking, “Black hole explosions,” Nature 248 (1974) 30-31. [2] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43 (1975) 199- 20. Erratum: ibid. 46 (1976) 206. [3] W. G. Unruh, “Notes on black hole evaporation,” Phys. Rev. D14 (1976) 870. [4] L. C. Barbado, C. Barcel´o, L. J. Garay, “Hawking radiation as perceived by different observers,” Class. Quant. Grav. 28 (2011) 125021. [arXiv:1101.4382 [gr-qc]]. [5] T. Jacobson, “Black hole evaporation and ultrashort distances,” Phys. Rev. D44 (1991) 1731-1739. [6] T. Jacobson, “Black hole radiation in the presence of a short distance cutoff,” Phys. Rev. D48 (1993) 728-741. [hep-th/9303103]. [7] W. G. Unruh, “Sonic analog of black holes and the effects of high frequencies on black hole evaporation,” Phys. Rev. D51 (1995) 2827-2838. [8] C. Barceló, S. Liberati, M. Visser, “Analogue gravity,” Living Rev. Rel. 14 (2011) 3. URL (cited on 07/09/2011): [9] C. Barceló, L. J. Garay, G. Jannes, “Sensitivity of Hawking radiation to superluminal dispersion relations,” Phys. Rev. D79 (2009) 024016. [arXiv:0807.4147 [gr-qc]]. [10] T. Jacobson, D. Mattingly, “Gravity with a dynamical preferred frame,” Phys. Rev. D64 (2001) 024028. [gr-qc/0007031]. [11] T. Jacobson, “Trans Planckian redshifts and the substance of the space-time river,” Prog. Theor. Phys. Suppl. 136 (1999) 1-17. [hep-th/0001085]. [12] S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D14 (1976) 2460-2473. S. W. Hawking, “Information loss in black holes,” Phys. Rev. D72 (2005) 84013. [hep-th/0507171]. J. Preskill, “Do black holes destroy information?,” presented at nternational Symposium On Black Holes, Membranes, Wormholes And Superstrings Jan 1992, Woodlands, Texas [hep-th/9209058]. [13] B. J. Carr, K. Kohri, Y. Sendouda, J. ’i. Yokoyama, “New cosmological constraints on primordial black holes,” Phys. Rev. D81 (2010) 104019. [arXiv:0912.5297 [astro-ph.CO]]. [14] V. Khachatryan et al. [ CMS Collaboration ], “Search for Microscopic Black Hole Signatures at the Large Hadron Collider,” Phys. Lett. B697 (2011) 434-453. [arXiv:1012.3375 [hep-ex]]. [15] S. Corley, “Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An Analytical approach,” Phys. Rev. D57 (1998) 6280-6291. [hep-th/9710075]. [16] J. Macher and R. Parentani, “Black/White hole radiation from dispersive theories,” Phys. Rev. D79 (2009) 124008. [arXiv:0903.2224 [hep-th]]. [17] C. Barcel´o, L. J. Garay, G. Jannes, “The two faces of quantum sound,” Phys. Rev. D82 (2010) 044042. [arXiv:1006.0181 [gr-qc]]. [18] S. Corley and T. Jacobson, “Black hole lasers,” Phys. Rev. D59 (1999) 124011. [hep-th/9806203]. [19] S. Finazzi and R. Parentani “Black hole lasers in Bose-Einstein condensates,” New J. Phys. [20] A. Coutant, R. Parentani, “Black hole lasers, a mode analysis,” Phys. Rev. D81 (2010) 084042. [arXiv:0912.2755 [hep-th]]. [21] U. Leonhardt, T. G. Philbin, “Black hole lasers revisited,” Lect. Notes Phys. 718 (2007) 229-245. [arXiv:0803.0669 [gr-qc]]. [22] L. J. Garay, J. R. Anglin, J. I. Cirac and P. Zoller, “Sonic black holes in dilute Bose–Einstein condensates,” Phys. Rev. A 63 (2001) 023611. [arXiv:gr-qc/0005131]. [23] C. Barcel´o, A. Cano, L. J. Garay, G. Jannes, “Stability analysis of sonic horizons in Bose-Einstein condensates,” Phys. Rev. D74 (2006) 024008. [gr-qc/0603089]. [24] C. Barcel´o, S. Liberati, S. Sonego and M. Visser, “Fate of gravitational collapse in semiclassical gravity,” Phys. Rev. D77 (2008) 044032. [arXiv:0712.1130 [gr-qc]]. [25] C. Barcel´o, L. J. Garay, G. Jannes, “Quantum Non-Gravity and Stellar Collapse,” Found. Phys. 41 (2011) 1532-1541. [arXiv:1002.4651 [gr-qc]]. [26] P. O. Mazur and E. Mottola, “Gravitational condensate stars: An alternative to black holes”, arXiv:gr-qc/0109035; P. O. Mazur and E. Mottola, “Gravitational vacuum condensate stars”, Proc. Nat. Acad. Sci. 101 (2004) 9545-9550. [gr-qc/0407075]. [27] G. Chapline, E. Hohlfeld, R. B. Laughlin and D. I. Santiago, “Quantum phase transitions and the breakdown of classical general relativity”, Int. J. Mod. Phys. A18 (2003) 3587-3590. [gr qc/0012094]. [28] R. D. Sorkin, R. M. Wald, Z. J. Zhang, “Entropy of selfgravitating radiation,” Gen. Rel. Grav. 13 (1981) 1127-1146. [29] F. Pretorius, D. Vollick, W. Israel, “An Operational approach to black hole entropy,” Phys. Rev. D57 (1998) 6311-6316. [gr-qc/9712085]. [30] G. Abreu, M. Visser, “Tolman mass, generalized surface gravity, and entropy bounds,” Phys. Rev. Lett. 105 (2010) 041302. [arXiv:1005.1132 [gr-qc]]. [31] G. Abreu, C. Barceló and M. Visser, “Entropy bounds in terms of the w parameter,” [arXiv:1109.2710 [gr-qc]]. [32] J. P. S. Lemos, O. B. Zaslavskii, “Entropy of quasiblack holes,” Phys. Rev. D81 (2010) 064012. [arXiv:0904.1741 [gr-qc]]. [33] C. Barceló, S. Liberati, S. Sonego, M. Visser, “Hawking-like radiation does not require a trapped region,” Phys. Rev. Lett. 97 (2006) 171301. [gr-qc/0607008]. [34] C. R. Stephens, G. ’t Hooft, B. F. Whiting, “Black hole evaporation without information loss,” Class. Quant. Grav. 11 (1994) 621-648. [gr-qc/9310006]. [35] C. Barceló, S. Liberati, S. Sonego, M. Visser, “Minimal conditions for the existence of a Hawking-like flux,” Phys. Rev. D83 (2011) 041501. [arXiv:1011.5593 [gr-qc]]. [36] C. Barceló, S. Liberati, S. Sonego, M. Visser, “Hawking-like radiation from evolving black holes and compact horizonless objects,” JHEP 1102 (2011) 003. [arXiv:1011.5911 [gr-qc]]. [37] T. Jacobson, S. Liberati, D. Mattingly, “Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints,” Annals Phys. 321 (2006) 150-196. [astro-ph/0505267]. [38] L. Maccione, A. M. Taylor, D. M. Mattingly, S. Liberati, “Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays,” JCAP 0904 (2009) 022. [arXiv:0902.1756 [astro-ph.HE]]. [39] L. J. Garay, J. R. Anglin, J. I. Cirac, P. Zoller, “Black holes in Bose-Einstein condensates,” Phys. Rev. Lett. 85 (2000) 4643-4647. [gr-qc/0002015]. [40] C. Barcel´o, A. Cano, L. J. Garay, G. Jannes, “Quasi-normal mode analysis in BEC acoustic black holes,” Phys. Rev. D75 (2007) 084024. [gr-qc/0701173]. [41] S. Finazzi, R. Parentani, “Spectral properties of acoustic black hole radiation: broadening the horizon,” Phys. Rev. D83 (2011) 084010. [arXiv:1012.1556 [gr-qc]].