Person:
Alonso Fernández, José

Loading...
Profile Picture
First Name
José
Last Name
Alonso Fernández
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Óptica y Optometría
Department
Óptica
Area
Optica
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 7 of 7
  • Item
    Generation of optical reference signals robust to diffractive effects
    (Ieee Photonics Technology Letters, 2007) Saez Landete, José; Salcedo Sanz, Sancho; Rosa Zurera, Manuel; Alonso Fernández, José; Bernabeu Martínez, Eusebio
    In grating measurement systems, a reference signal is needed to achieve an absolute measurement of the position. The zero reference signals are normally obtained illuminating two identical superimposed zero reference codes (ZRCs) and registering the transmitted light by means of a photodiode. As one ZRC moves with respect to the other, the two codes overlap and the signal registered is the autocorrelation of the ZRC transmittance. In high resolution systems, the diffraction effects degrade the geometrical shadow of the first ZRC as it propagates to the second one. As a result, the autocorrelation is also degraded and the amplitude of the reference signal is greatly reduced. In this letter, we present a method for designing ZRCs with minimum diffractive effects. The method is based on the optimization of ZRCs by means of a genetic algorithm.
  • Item
    Invariant grating pseudoimaging using polychromatic light and a finite extension source
    (Applied Optics, 2008) Sánchez Brea, Luis Miguel; Saez Landete, José; Alonso Fernández, José; Bernabeu Martínez, Eusebio
    The Talbot effect is a well studied phenomenon by which grating pseudoimages appear at certain periodic distances when monochromatic light is used. Recently, numerical simulations have shown a new phenomenon; when a polychromatic light beam is used in a double grating system, the intensity of the pseudoimages presents a transverse-profile that remains unaffected over a wide range of propagation distances. This effect can be used to increase the tolerances of gratings based optical devices, such as displacement measurement systems, interferometers, and spectrometers. The pseudoimages formation with a polychromatic and finite extension light source is analytically and experimentally demonstrated. Relatively simple analytical expressions for the intensity and the contrast allow us to predict when pseudoimages present a constant contrast and when they disappear. Furthermore, we experimentally obtain the pseudoimages using the proposed configuration, corroborating the theoretical predictions.
  • Item
    Correlation technique for the compensation of diffraction widening of optical reference signals
    (Journal of The Optical Society Of America A-Optics Image Science and Vision, 2009) Saez Landete, José; Alonso Fernández, José; Sánchez Brea, Luis Miguel; Morlanes Calvo, Tomás; Bernabeu Martínez, Eusebio
    Two-grating measurement systems are routinely employed for high-resolution measurements of angular and linear displacement. Usually, these systems incorporate zero reference codes (ZRCs) to obtain a zero reference signal (ZRS), which is used as a stage-homing signal. This signal provides absolute information of the position to the otherwise relative information provided by the two-grating incremental subsystems. A zero reference signal is commonly obtained illuminating the superposition of two identical pseudorandom codes and registering the transmitted light by means of a photodiode. To increase the resolution of the system, a reduction of the grating period and the ZRC widths is required. Due to this reduction, the diffractive effects produce a widening of the ZRS and, in turn, a loss of the measuring accuracy. In this work, we propose a method to narrow the distorted signal obtained with a Lau-based encoder, reinstating the accuracy of the ZRS. The method consists of the inclusion of a correlation mask on the detector. A theoretical model to design the mask has been developed, and experimental results have been obtained that validate the proposed technique.
  • Item
    Optoelectronic device for the measurement of the absolute linear position in the micrometric displacement range
    (Materials, Devices, and Applications, 2005) Morlanes Calvo, Tomás; Peña, José Luis de la; Sánchez Brea, Luis Miguel; Alonso Fernández, José; Crespo Vázquez, Daniel; Saez Landete, José; Bernabeu Martínez, Eusebio; Badenes, Goncal; Abbott, Derek; Serpenguzel, Ali
    In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.
  • Item
    Design of two-dimensional zero reference codes by means of a global optimization method
    (Optics Express, 2005) Saez Landete, José; Alonso Fernández, José; Bernabeu Martínez, Eusebio
    A method to obtain the absolute measure of the position is by means of the autocorrelation of two zero reference marks. In one-axis measurement systems one dimensional mark are used and the design of these marks is relatively complex. When the movement is in two-axes, two dimensional reference marks are required and they are even harder to design. We report a method of global optimization to calculate the optimal two dimensional zero reference marks which generate the reference signal with the highest central peak. This method proves to be a powerful tool for solving this problem.
  • Item
    Design of zero reference codes by means of a global optimization method
    (Optics Express, 2005) Saez Landete, José; Alonso Fernández, José; Bernabeu Martínez, Eusebio
    The grating measurement systems can be used for displacement and angle measurements. They require of zero reference codes to obtain zero reference signals and absolute measures. The zero reference signals are obtained from the autocorrelation of two identical zero reference codes. The design of codes which generate optimum signals is rather complex, especially for larges codes. In this paper we present a global optimization method, a DIRECT algorithm for the design of zero reference codes. This method proves to be a powerful tool for solving this inverse problem.
  • Item
    Optimal design of optical reference signals by use of a genetic algorithm
    (Optics Letters, 2005) Saez Landete, José; Salcedo Sanz, Sancho; Rosa Zurera, Manuel; Alonso Fernández, José; Bernabeu Martínez, Eusebio
    A new technique for the generation of optical reference signals with optimal properties is presented. In grating measurement systems a reference signal is needed to achieve an absolute measurement of the position. The optical signal is the autocorrelation of two codes with binary transmittance. For a long time, the design of this type of code has required great computational effort, which limits the size of the code to ~30 elements. Recently, the application of the dividing rectangles (DIRECT) algorithm has allowed the automatic design of codes up to 100 elements. Because of the binary nature of the problem and the parallel processing of the genetic algorithms, these algorithms are efficient tools for obtaining codes with particular autocorrelation properties. We design optimum zero reference codes with arbitrary length by means of a genetic algorithm enhanced with a restricted search operator.