Bayesian inference approach for Full Poincaré Mueller polarimetry

dc.contributor.authorSuárez Bermejo, Juan Carlos
dc.contributor.authorGorgas García, Francisco Javier
dc.contributor.authorPascual Ramírez, Sergio
dc.contributor.authorSantarsiero, Massimo
dc.contributor.authorGonzález de Sande, Juan Carlos
dc.contributor.authorPiquero Sanz, Gemma María
dc.date.accessioned2025-12-12T18:16:22Z
dc.date.available2025-12-12T18:16:22Z
dc.date.issued2024-01
dc.description© 2023 Elsevier Ltd.
dc.description.abstractFull Poincare Mueller Polarimetry is a new technique for characterizing samples by means of their Mueller matrix. The method is based on the use of a full Poincare beam as a generator of polarization states. These beams present different polarization states, covering the entire Poincare sphere surface, at different points in the beam cross section. To obtain the Mueller matrix, Stokes parameters are collected at both the entrance and the output of the sample. They are calculated from irradiance measurements at each pixel of a CCD camera for different configurations of the polarization state analyzer. These measurements can be processed in several ways. In this work, we propose to use Bayesian inference, in particular, Markov chain Monte Carlo methods, to obtain, without any prior knowledge of the sample, its Mueller matrix together with its uncertainties. The new approach is tested with experimental measurements of different samples and compared with the real theoretical Mueller matrices. Excellent agreement is observed between the experimental results and the theoretical ones for all the samples tested.
dc.description.departmentDepto. de Óptica
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.facultyInstituto de Física de Partículas y del Cosmos (IPARCOS)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipAgencia Estatal de Investigación
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationJ.C. Suárez-Bermejo, J. Gorgas, S. Pascual, M. Santarsiero, J.C.G. De Sande, G. Piquero, Bayesian inference approach for Full Poincaré Mueller polarimetry, Optics & Laser Technology 168 (2024) 109983. https://doi.org/10.1016/j.optlastec.2023.109983.
dc.identifier.doi10.1016/j.optlastec.2023.109983
dc.identifier.essn1879-2545
dc.identifier.issn0030-3992
dc.identifier.officialurlhttps://dx.doi.org/10.1016/j.optlastec.2023.109983
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0030399223008769
dc.identifier.urihttps://hdl.handle.net/20.500.14352/128885
dc.journal.titleOptics and Laser Technology
dc.language.isoeng
dc.page.final109983-9
dc.page.initial109983-1
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104268GB-C21/ES/MANIPULACION DE LA COHERENCIA Y POLARIZACION DE CAMPOS ELECTROMAGNETICOS PARAXIALES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107427GB-C31/ES/GALAXIAS REALES Y VIRTUALES: DE LO PEQUEÑO A LO GRANDE/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123417OB-I00/ES/CONTRIBUCION ESPAÑOLA A LA FASE DE DISEÑO PRELIMINAR DE MOSAIC PARA EL ELT/
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPolarimetry
dc.subject.keywordPolarization
dc.subject.keywordFull Poincare beams
dc.subject.keywordBayesian inference
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209 Óptica
dc.titleBayesian inference approach for Full Poincaré Mueller polarimetry
dc.typejournal article
dc.type.hasVersionAO
dc.volume.number168
dspace.entity.typePublication
relation.isAuthorOfPublicationd04f839b-2a80-4859-a493-3f0a9df4277f
relation.isAuthorOfPublication67ec03af-ce83-4a1a-8dd6-c4b4bc6cc3bc
relation.isAuthorOfPublication3a400653-91df-40bb-8891-03df312fea56
relation.isAuthorOfPublication.latestForDiscoveryd04f839b-2a80-4859-a493-3f0a9df4277f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BayesFPP_Revised.pdf
Size:
5.82 MB
Format:
Adobe Portable Document Format
Description:
Preprint

Collections