Optical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1-1.8 eV)

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science SA
Google Scholar
Research Projects
Organizational Units
Journal Issue
Optical-transmission spectra are very sensitive to inhomogeneities in thin films. In particular, a non-uniform thickness produces a clear shrinking in the transmission spectrum at normal incidence. If this deformation is not taken into account, it may lead to serious errors in the calculated values of the refractive index and film thickness. In this paper, a method first applied by Swanepoel for enabling the transformation of an optical-transmission spectrum of a thin film of wedge-shaped thickness into the spectrum of a uniform film, whose thickness is equal to the average thickness of the non-uniform layer, has been employed. This leads subsequently to the accurate derivation of the refractive index in the subgap region (0.1-1.8 eV), the average thickness, as well as a parameter indicating the degree of film-thickness uniformity. This optical procedure is applied to the particular case of freshly-prepared films of the Ge10As15Se75 ternary chalcogenide glassy alloy. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-oscillator model. The optical-absorption edge is described using the 'non-direct transition' model proposed by Tauc, and the optical energy gap is calculated by Tauc's extrapolation. Finally, the photo-induced and thermally induced changes in the optical properties of the a-Ge10As15Se75 layers are also studied. (C) 1999 Elsevier Science S.A. All rights reserved.
© Elsevier Science S.A. The authors are grateful to Prof. R. Swanepoel (Rand Afrikaans University, Johannesburg, South Africa), Dr. L. Tichý (Joint Laboratory, Pardubice, Czech Republic) and Dr. M. McClain (National Institute of Standards and Technology, Gaithersburg, USA) for some very valuable discussions. Also, the authors would like to thank Mr. Royston Snart for his English language assistance. This work was supported by the CICYT (Spain), under the MAT 98-0791 project.
Unesco subjects
[1] J.A. Savage, Infrared Optical Materials and Their Antireflection Coatings, Hilger, London, 1985. [2] A.E. Owen, A.P. Firth, P.J.S. Ewen, Philos. Mag. B. 52 (1985) 347. [3] J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E: Sci. Instrum. 9 (1976) 1002. [4] R. Swanepoel, J. Phys. E: Sci. Instrum. 16 (1983) 1214. [5] M. Hamman, M.A. Harith, W.H. Osman, Solid State Commun. 59 (1986) 271. [6] J.A. Kalomiros, J. Spyridelis, Phys. Status Solidi (a) 107 (1988) 633. [7] E. Márquez, J.B. Ramírez-Malo, P. Villares, R. Jiménez-Garay, P.J.S. Ewen, A.E. Owen, J. Phys. D: Appl. Phys. 25 (1992) 535. [8] R. Swanepoel, J. Phys. E: Sci. Instrum. 17 (1984) 896. [9] R. Glang, Handbook of Thin Film Technology, McGraw-Hill, New York, 1983, p. 1±55. [10] S.C. Moss, D.L. Price, Physics of Disordered Materials, Plenum, New York, 1985, p. 77. [11] M.M. El-Samanoudy, M. Fadel, J. Mater. Sci. 27 (1992) 646. [12] M. Fadel, Vacuum 48 (1997) 73. [13] J.B. Ramírez-Malo, E. Márquez, P. Villares, R. Jiménez-Garay, Mater. Lett. 17 (1993) 327. [14] M. McClain, A. Feldman, D. Kahamer, X. Ying, Comput. Phys. 5 (1990) 45. [15] C. Corrales, Ph.D. Thesis, University of Cádiz, 1995. [16] J. Reyes, E. Márquez, J.B. Ramírez-Malo, C. Corrales, J. Fernández-Peña, P. Villares, R. Jiménez-Garay, J. Mater. Sci. 30 (1995) 4133. [17] J.P. de Neufville, R. Seguin, S.C. Moss, S.R. Ovshinsky, Amorphous and Liquid Semiconductors, Taylor and Francis, London, 1974, p. 737. [18] J. Tauc, A. Menth, J. Non-Cryst. Solids 8±10 (1972) 569. [19] N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials, Clarendon Press, Oxford, 1979, p. 289. [20] P. Nagels, E. Sleeckx, R. Callaerts, E. Márquez, J.M. González, A.M. Bernal-Oliva, Solid State Commun. 102 (1997) 539. [21] S.H. Wemple, M. DiDomenico, Phys. Rev. B. 3 (1971) 1338. [22] S.H. Wemple, Phys. Rev. B 7 (1972) 3767. [23] Ke. Tanaka, Thin Solid Films 66 (1980) 271. [24] A.M. Bernal-Oliva, E. Márquez, J.M. González-Leal, A.J. Gámez, R. Prieto-Alcón, R. Jiménez-Garay, J. Mater. Sci. Lett. 16 (1997) 665. [25] J. Ruíz-Pérez, E. Márquez, D. Minkov, J. Reyes, J.B. Ramírez-Malo, P. Villares, R. Jiménez-Garay, Phys. Scripta 53 (1996) 76. [26] J.B. Ramírez-Malo, E. Máraquez, C. Corrales, P. Villares, R. Jiménez-Garay, Mat. Sci. Eng. B-Solid 25 (1994) 53. [27] A. Zakery, A. Zekak, P.J.S. Ewen, C.W. Slinger, A.E. Owen, J. Non-Cryst. Solids 114 (1989) 109. [28] S.R. Elliott, J. Non-Cryst. Solids 81 (1986) 71. [29] S. Rajagopalan, K.S. Harshavardhan, L.K. Malhotra, K.L. Chopra, J. Non-Cryst. Solids 50 (1982) 29. [30] J.M. González-Leal, A. Ledesma, A.M. Bernal-Oliva, R. Prieto-Alcón, E. Márquez, J.A. Angel, J. Carábe, Mater. Lett., 39 (1999) 232. [31] J.B. Ramírez-Malo, C. Corrales, E. Márquez, J. Reyes, J. Fernández-Peña, P. Villares, R. Jiménez-Garay, Mater. Chem. Phys. 40 (1995) 30.