Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1-1.8 eV)

dc.contributor.authorMartil De La Plaza, Ignacio
dc.date.accessioned2023-06-20T19:06:49Z
dc.date.available2023-06-20T19:06:49Z
dc.date.issued1999-09-15
dc.description© Elsevier Science S.A. The authors are grateful to Prof. R. Swanepoel (Rand Afrikaans University, Johannesburg, South Africa), Dr. L. Tichý (Joint Laboratory, Pardubice, Czech Republic) and Dr. M. McClain (National Institute of Standards and Technology, Gaithersburg, USA) for some very valuable discussions. Also, the authors would like to thank Mr. Royston Snart for his English language assistance. This work was supported by the CICYT (Spain), under the MAT 98-0791 project.
dc.description.abstractOptical-transmission spectra are very sensitive to inhomogeneities in thin films. In particular, a non-uniform thickness produces a clear shrinking in the transmission spectrum at normal incidence. If this deformation is not taken into account, it may lead to serious errors in the calculated values of the refractive index and film thickness. In this paper, a method first applied by Swanepoel for enabling the transformation of an optical-transmission spectrum of a thin film of wedge-shaped thickness into the spectrum of a uniform film, whose thickness is equal to the average thickness of the non-uniform layer, has been employed. This leads subsequently to the accurate derivation of the refractive index in the subgap region (0.1-1.8 eV), the average thickness, as well as a parameter indicating the degree of film-thickness uniformity. This optical procedure is applied to the particular case of freshly-prepared films of the Ge10As15Se75 ternary chalcogenide glassy alloy. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-oscillator model. The optical-absorption edge is described using the 'non-direct transition' model proposed by Tauc, and the optical energy gap is calculated by Tauc's extrapolation. Finally, the photo-induced and thermally induced changes in the optical properties of the a-Ge10As15Se75 layers are also studied. (C) 1999 Elsevier Science S.A. All rights reserved.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26859
dc.identifier.doi10.1016/S0254-0584(99)00078-4
dc.identifier.issn0254-0584
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0254-0584(99)00078-4
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59257
dc.issue.number3
dc.journal.titleMaterials Chemistry and Physics
dc.language.isoeng
dc.page.final239
dc.page.initial231
dc.publisherElsevier Science SA
dc.relation.projectIDMAT 98-0791
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordNonuniform Thickness
dc.subject.keywordAmorphous-Silicon
dc.subject.keywordRefractive-Index
dc.subject.keywordSpectra.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleOptical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1-1.8 eV)
dc.typejournal article
dc.volume.number60
dcterms.references[1] J.A. Savage, Infrared Optical Materials and Their Antireflection Coatings, Hilger, London, 1985. [2] A.E. Owen, A.P. Firth, P.J.S. Ewen, Philos. Mag. B. 52 (1985) 347. [3] J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E: Sci. Instrum. 9 (1976) 1002. [4] R. Swanepoel, J. Phys. E: Sci. Instrum. 16 (1983) 1214. [5] M. Hamman, M.A. Harith, W.H. Osman, Solid State Commun. 59 (1986) 271. [6] J.A. Kalomiros, J. Spyridelis, Phys. Status Solidi (a) 107 (1988) 633. [7] E. Márquez, J.B. Ramírez-Malo, P. Villares, R. Jiménez-Garay, P.J.S. Ewen, A.E. Owen, J. Phys. D: Appl. Phys. 25 (1992) 535. [8] R. Swanepoel, J. Phys. E: Sci. Instrum. 17 (1984) 896. [9] R. Glang, Handbook of Thin Film Technology, McGraw-Hill, New York, 1983, p. 1±55. [10] S.C. Moss, D.L. Price, Physics of Disordered Materials, Plenum, New York, 1985, p. 77. [11] M.M. El-Samanoudy, M. Fadel, J. Mater. Sci. 27 (1992) 646. [12] M. Fadel, Vacuum 48 (1997) 73. [13] J.B. Ramírez-Malo, E. Márquez, P. Villares, R. Jiménez-Garay, Mater. Lett. 17 (1993) 327. [14] M. McClain, A. Feldman, D. Kahamer, X. Ying, Comput. Phys. 5 (1990) 45. [15] C. Corrales, Ph.D. Thesis, University of Cádiz, 1995. [16] J. Reyes, E. Márquez, J.B. Ramírez-Malo, C. Corrales, J. Fernández-Peña, P. Villares, R. Jiménez-Garay, J. Mater. Sci. 30 (1995) 4133. [17] J.P. de Neufville, R. Seguin, S.C. Moss, S.R. Ovshinsky, Amorphous and Liquid Semiconductors, Taylor and Francis, London, 1974, p. 737. [18] J. Tauc, A. Menth, J. Non-Cryst. Solids 8±10 (1972) 569. [19] N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials, Clarendon Press, Oxford, 1979, p. 289. [20] P. Nagels, E. Sleeckx, R. Callaerts, E. Márquez, J.M. González, A.M. Bernal-Oliva, Solid State Commun. 102 (1997) 539. [21] S.H. Wemple, M. DiDomenico, Phys. Rev. B. 3 (1971) 1338. [22] S.H. Wemple, Phys. Rev. B 7 (1972) 3767. [23] Ke. Tanaka, Thin Solid Films 66 (1980) 271. [24] A.M. Bernal-Oliva, E. Márquez, J.M. González-Leal, A.J. Gámez, R. Prieto-Alcón, R. Jiménez-Garay, J. Mater. Sci. Lett. 16 (1997) 665. [25] J. Ruíz-Pérez, E. Márquez, D. Minkov, J. Reyes, J.B. Ramírez-Malo, P. Villares, R. Jiménez-Garay, Phys. Scripta 53 (1996) 76. [26] J.B. Ramírez-Malo, E. Máraquez, C. Corrales, P. Villares, R. Jiménez-Garay, Mat. Sci. Eng. B-Solid 25 (1994) 53. [27] A. Zakery, A. Zekak, P.J.S. Ewen, C.W. Slinger, A.E. Owen, J. Non-Cryst. Solids 114 (1989) 109. [28] S.R. Elliott, J. Non-Cryst. Solids 81 (1986) 71. [29] S. Rajagopalan, K.S. Harshavardhan, L.K. Malhotra, K.L. Chopra, J. Non-Cryst. Solids 50 (1982) 29. [30] J.M. González-Leal, A. Ledesma, A.M. Bernal-Oliva, R. Prieto-Alcón, E. Márquez, J.A. Angel, J. Carábe, Mater. Lett., 39 (1999) 232. [31] J.B. Ramírez-Malo, C. Corrales, E. Márquez, J. Reyes, J. Fernández-Peña, P. Villares, R. Jiménez-Garay, Mater. Chem. Phys. 40 (1995) 30.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication.latestForDiscovery6db57595-2258-46f1-9cff-ed8287511c84

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,81.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format

Collections