On optimal approximation in periodic Besov spaces
Loading...
Download
Official URL
Full text at PDC
Publication date
2019
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
We work with spaces of periodic functions on the d-dimensional torus. We show that estimates for L∞-approximation of Sobolev functions remain valid when we replace L1 by the isotropic periodic Besov space B01;1 or the periodic Besovspace with dominating mixed smoothness S01;1B. For t > 1=2, we also prove estimates for L2-approximation of functions in the Besov space of dominating mixed smoothness St 1;1B, describing exactly the dependence of the involved constants on the dimension d and the smoothness t.