On optimal approximation in periodic Besov spaces

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We work with spaces of periodic functions on the d-dimensional torus. We show that estimates for L∞-approximation of Sobolev functions remain valid when we replace L1 by the isotropic periodic Besov space B01;1 or the periodic Besovspace with dominating mixed smoothness S01;1B. For t > 1=2, we also prove estimates for L2-approximation of functions in the Besov space of dominating mixed smoothness St 1;1B, describing exactly the dependence of the involved constants on the dimension d and the smoothness t.
[1] C. Aistleitner and J. Dick, Functions of bounded variation, signed measures and a general Koksma-Hlawka inequality, Acta Arithmetica 167 (2015), 143-171. [2] C. Aistleitner, F. Pausinger, A.M. Svane and R.F. Tichy, On functions of bounded variation, Math. Proc. Camb. Phil. Soc. 162 (2017), 405-418. [3] T.I. Amanov, Spaces of differentiable functions with dominant mixed derivative, Nauka, Alma-Ata, 1976. [4] J. Appell, J.Banaz and N.J. Merentez Diaz, Bounded variation and around, De Gruyter, Berlin, 2013. [5] M. Bachmayr, W. Dahmen, R.A. DeVore and L. Grasedyck, Approximation of high-dimensional rank one tensors, Constr. Approx. 39 (2014), 385-395. [6] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer. 13 (2004), 147- 269. [7] B. Carl and I. Stephani, Entropy, compactness and the approximation of operators, Cambridge Univ. Press, Cambridge, 1990. [8] F. Cobos, T. Kühn, and W. Sickel, Optimal approximation of multivariate periodic Sobolev functions in the sup-norm, J. Funct. Anal. 270 (2016) 4196-4212. [9] A. Defant and K. Floret, Tensor norms and operator ideals, North Holland, Amsterdam, 1993. [10] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993. [11] D. D~ung and T. Ullrich, N-Widths and "-dimensions for high-dimensional approximations, Found. Comp. Math 13 (2013), 965-1003. [12] D. D~ung, V.N. Temlyakov, T. Ullrich, Hyperbolic Cross Approximation, Advanced Courses in Mathematics - CRM Barcelona, Springer, Barcelona, 2018. [13] D.E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators, Cambridge Tracts in Mathematics 120, Cambridge University Press, Cambridge, 1996. [14] R. E. Edwards, Fourier series. A modern introduction, Springer, New York, 1979. [15] C.V. Hutton, On the approximation numbers of an operator and its adjoint, Math. Ann. 210 (1974), 277-280. [16] D. Krieg, Tensor sequences and the approximation of tensor product operators, J. Complexity 44 (2018), 30-51. [17] D. Krieg and D. Rudolf, Recovery algorithms for high-dimensional rank one tensors, J. Approx. Theory 237 (2019), 17-29. [18] T. Kühn, S. Mayer, and T. Ullrich, Counting via entropy { new preasymptotics for the approximation numbers of Sobolev embeddings, Siam J. Numer. Anal 54(6)(2016), 3625-3647. [19] T. Kühn, W. Sickel and T. Ullrich, Approximation numbers of Sobolev embeddings { Sharp constants and tractability, J. Complexity 30 (2014), 95-116. [20] T. Kühn, W. Sickel and T. Ullrich, Approximation of mixed order Sobolev functions on the d-torus { Asymptotics, preasymptotics and d-dependence, Constr. Approx. 42 (2015), 353-398. [21] W.A. Light and E.W. Cheney, Approximation theory in tensor product spaces, Lecture Notes in Math. 1169, Springer, Berlin, 1985. [22] P.I. Lizorkin and S.M. Nikol'skij, Function spaces of mixed smoothness from the decomposition point of view (Russian), Trudy Mat. Inst. Steklova 187 (1989), 143-161, translated in Proc. Steklov Inst. Math. (1990), no.3, 163- 184. [23] T. Mieth, Sharp estimates for approximation numbers of non-periodic Sobolev spaces, arXiv:1811.01576 [math.FA], to appear in J. Complexity [24] E. Novak and D. Rudolf, Tractability of the approximation of highdimensional rank one tensors, Constr. Approx. 43 (2016), 1-13. [25] A.B. Owen, Multi-dimensional varaiton for quasi-Monte Carlo. Contemporary multivariate analysis and design of experiments, 49-74, Ser. Biostat. 2, World Sientifc Publ. Co. Pte. Ltd., Hackensack, NJ, 2006. [26] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Series, Durham, 1976. [27] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980. [28] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, Cambridge, 1987. [29] A.S. Romanyuk, Linear widths of the Besov classes of periodic functions of many variables. I, Ukr. Math. J. 53 (1) (2001), 744-761. [30] A.S. Romanyuk, Kolmogorov and trigonometric widths of the Besov classesBr p; of multivariate periodic functions, Mat. Sbornik 197 (1) (2006), 71-96. [31] H.-J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, Geest & Portig, Leipzig, 1987 and Wiley, Chichester, 1987. [32] Ch. Schwab, E. Süli and R.A. Todor, Sparse finite element approximation of high-dimensional transport-dominated diffusion problems, ESAIM: Mathematical Modelling and Numerical Analysis 42 (05) (2008), 777-819. [33] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of Bs p;q and Fsp;q type, Z. Anal. Anwendungen 14 (1995), 105-140. [34] V.N. Temlyakov, Approximation of periodic functions of several variables by trigonometric polynomials and widths of some classes of functions, Math. USSR Izvestiya 27 (1986), 285-322. [35] V.N. Temlyakov, Approximation of periodic functions, Nova Science, New York, 1993. [36] V.N. Temlyakov, Multivariate approximation, Cambridge Univ. Press, Cambridge, 2017. [37] H. Triebel, Fourier analysis and function spaces, Teubner-Texte Math. 7, Teubner, Leipzig, 1977. [38] H. Triebel, Theory of function spaces, Geest & Portig, Leipzig, 1983 and Birkhäuser, Basel, 1983. [39] H. Triebel, Bases in function spaces, sampling, discrepancy, numerical integration, EMS Tracts in Mathematics 11, European Mathematical Society, Zürich, 2010. [40] H. Yserentant, Regularity and Approximability of Electronic Wave Functions, Springer, Berlin, 2010.