Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Generalization and completeness of stochastic local search algorithms

dc.contributor.authorLoscos Barroso, Daniel
dc.contributor.authorMartí Oliet, Narciso
dc.contributor.authorRodríguez Laguna, Ismael
dc.date.accessioned2023-06-16T14:19:43Z
dc.date.available2023-06-16T14:19:43Z
dc.date.issued2021-09-15
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2021)
dc.description.abstractWe generalize Stochastic Local Search (SLS) heuristics into a unique formal model. This model has two key components: a common structure designed to be as large as possible and a parametric structure intended to be as small as possible. Each heuristic is obtained by instantiating the parametric part in a different way. Particular instances for Genetic Algorithms (GA), Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO) are presented. Then, we use our model to prove the Turing-completeness of SLS algorithms in general. The proof uses our framework to construct a GA able to simulate any Turing machine. This Turing-completeness implies that determining any non-trivial property concerning the relationship between the inputs and the computed outputs is undecidable for GA and, by extension, for the general set of SLS methods (although not necessarily for each particular method). Similar proofs are more informally presented for PSO and ACO.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70334
dc.identifier.doi10.1016/j.swevo.2021.100982
dc.identifier.issn2210-6502
dc.identifier.officialurlhttps://doi.org/10.1016/j.swevo.2021.100982
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4698
dc.journal.titleSwarm and Evolutionary Computation
dc.language.isoeng
dc.page.initial100982
dc.publisherElsevier
dc.relation.projectIDTIN2015-67522-C3-3-R, PID2019-108528RB-C22
dc.relation.projectIDBLOQUES-CM (S2018/TCS-4339)
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.keywordStochastic local search
dc.subject.keywordEvolutionary computation
dc.subject.keywordSwarm intelligence
dc.subject.keywordFormal languages
dc.subject.keywordOperational semantics
dc.subject.keywordGeneralization
dc.subject.keywordComputability
dc.subject.keywordTuring-completeness
dc.subject.ucmInformática (Informática)
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleGeneralization and completeness of stochastic local search algorithms
dc.typejournal article
dc.volume.number68
dspace.entity.typePublication
relation.isAuthorOfPublication10e0aed7-243c-4d26-be5a-7e9c64d55e3f
relation.isAuthorOfPublicatione8d4e85a-2a43-444c-84e7-1fa5f392c50d
relation.isAuthorOfPublication28429d40-53cb-4bb3-a3f6-82ec557a34ed
relation.isAuthorOfPublication.latestForDiscovery10e0aed7-243c-4d26-be5a-7e9c64d55e3f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2210650221001449-main.pdf
Size:
940.71 KB
Format:
Adobe Portable Document Format

Collections