Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data

Thumbnail Image
Full text at PDC
Publication Date
García Herrera, Ricardo
García, R. R.
Giorgetta, M. A.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Geophysical Union
Google Scholar
Research Projects
Organizational Units
Journal Issue
The vertical propagation of the El Nino-Southern Oscillation (ENSO) temperature signal has been analyzed in two general circulation models, the Whole Atmosphere Community Climate Model and the Middle Atmosphere European Center - Hamburg Model, and in the ERA-40 reanalysis data set. Monthly mean data have been used, and composite differences ( El Nino - La Nina) have been computed. Our results show that the ENSO signal propagates into the middle atmosphere by means of planetary Rossby waves. Significant wave-like anomalies are observed up to around 40 km. This propagation is strongly influenced by the zonal mean zonal winds, being most effective in midlatitudes of the Northern Hemisphere because ENSO events tend to peak in northern winter, when stratospheric winds are westerly in the Northern Hemisphere, and allow vertical propagation of Rossby waves. In addition, zonal mean temperature anomalies are observed in the middle atmosphere in the tropics and at polar latitudes of the Northern Hemisphere. These anomalies are the result of changes in the residual mean meridional circulation: Our analysis reveals that during an El Nino event, vertical wave propagation and divergence of Eliassen-Palm flux are enhanced, forcing a stronger residual circulation in the stratosphere, which cools the tropics and warms the higher latitudes. This pattern is highly significant in the models during certain months but much less in the ERA-40 data, where other sources of variability ( in particular the quasi-biennial oscillation) also influence the residual circulation.
© 2006 by the American Geophysical Union. This paper has been partially funded by NCAR and MPI, which, additionally, kindly provided the data from the models. Furthermore, we want to thank the National Institute of Meteorology (INM) in Spain and the ECMWF for facilitating the accessto the ERA-40 data.
Andrews, D. G., J. R. Holton, and C. B. Leovy (1987), Middle Atmospheric Dynamics, Int. Geophys. Ser., vol. 40, 489 pp., Elsevier, New York. Angell, J. K. (1981), Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern Pacific, Mon. Weather Rev., 109, 230–243. Angell, J. K. (2000), Tropospheric temperature variations adjusted for El Niño, 1958– 1998, J. Geophys. Res., 105, 11,841–11,849. Baldwin, M. P., and D. O’Sullivan (1995), Stratospheric effects of ENSOrelated tropospheric circulation anomalies, J. Clim., 8, 649–667. Calvo, N., R. García, R. García Herrera, D. Gallego, L. Gimeno, E. Hernández, and P. Ribera (2004), Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000, J. Clim., 17, 3934–3946. Charney, J. G., and P. G. Drazin (1961), Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109. Chen, W., M. Takahashi, and H.-F. Graf (2003), Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST, J. Geophys. Res., 108(D24), 4797, doi:10.1029/2003JD003834. Christy, J. R., and R. T. McNider (1994), Satellite greenhouse signal, Nature, 367, 325. Díaz, H. F., M. P. Hoerling, and J. K. Eischeid (2001), ENSO variability, teleconnections and climate change, Int. J. Clim., 21, 1845– 1862. Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre (1980), Eliassen-Palm cross sections for the troposphere, J. Atmos. Sci., 37, 2600– 2616. García, R., and M. L. Salby (1987), Transient response to localized episodic heating in the tropics. Part II: Far-field behavior, J. Atmos. Sci., 44, 499–530. Giorgetta, M. A., E. Manzini, and E. Roeckner (2002), Forcing of the quasibiennial oscillation from a broad spectrum of atmospheric waves, Geophys. Res. Lett., 29(8), 1245, doi:10.1029/2002GL014756. Halpert, M. S., and C. S. Ropelewski (1992), Surface temperature patterns associated with the Southern Oscillation, J. Clim., 5, 577–593. Hamilton, K. (1993), An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere, J. Atmos. Sci., 50, 3468–3473. Horel, J. D., and J. M. Wallace (1981), Planetary-scale atmospheric phenomena associated with the Southern Oscillation, Mon. Weather Rev., 109, 813–829. Horinouchi, T., and S. Yoden (1996), Excitation of transient waves by localized episodic heating in the tropics and their propagation into the middle atmosphere, J. Meteorol. Soc. Jpn., 74, 189– 210. Hoskins, B. J., and D. Karoly (1981), The steady linear response of a spherical atmosphere to thermal and orographic forcing, J. Atmos. Sci., 38, 1179– 1196. Kiehl, J. R., J. J. Hack, G. B. Bonan, B. A. Bobille, D. L. Williamson, and P. J. Rasch (1998), The National Center for Atmospheric Research Community Climate Model, CCM3, J. Clim., 11, 1131–1149. Kiladis, G. N., and H. F. Diaz (1989), Global climatic anomalies associated with extremes in the Southern Oscillation, J. Clim., 2, 1069–1090. Manzini, E., N. A. McFarlane, and C. McLandress (1997), Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model, J. Geophys. Res., 102, 25,751– 25,762. Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner (2006), The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model, J. Clim., in press. Newman, P. A., E. R. Nash, and J. E. Rosenfield (2001), What controls the temperature of the Artic stratosphere during the spring?, J. Geophys. Res., 106, 19,999– 20,010. Oort, A. H., and J. J. Yienger (1996), Observed interannual variability in the Hadley circulation and its connection to ENSO, J. Clim., 9, 2751– 2767. Randel,W., et al. (2004), The SPARCintercomparison of middle-atmosphere climatologies, J. Clim., 17, 986–1003. Reid, G. C., K. S. Gage, and J. R. McAfee (1989), The thermal response of the tropical atmosphere to variations in equatorial Pacific sea surface temperature, J. Geophys. Res., 94, 14,705– 14,716. Ribera, P., and M. E. Mann (2002), Interannual variability in the NCEP reanalysis 1948– 1999, Geophys. Res. Lett., 29(10), 1494, doi:10.1029/ 2001GL013905. Roeckner, E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L.Dümenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida (1996), The atmospheric general circulation model ECHAM-4: Model description and simulation of present day climate, MPI-Rep. 219, Max Planck Inst. for Meteorol., Hamburg, Germany. Roeckner, E., et al. (2003), The atmospheric general circulation model ECHAM 5. Part I: Model description, Rep. 349, Max Planck Inst. for Meteorol., Hamburg, Germany. (Available at Sassi, F., R. R. García, B. A. Boville, and H. Liu (2002), On temperature inversions and the mesospheric surf zone, J. Geophys. Res., 107(D19), 4380, doi:10.1029/2001JD001525. Sassi, F., D. Kinnison, B. A. Boville, R. R. García, and R. Roble (2004), Effect of El Niño – Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere, J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434. Simmons, A. J., and J. K. Gibson (2000), The ERA-40 project plan, ERA-40 Proj. Rep. Ser. 1, 63 pp., Eur. Cent. for Medium-Range Weather Forecasts, Reading, U. K. Simmons, A. J., J. M. Wallace, and W. Branstator (1983), Barotropic wave propagation and instability, and atmospheric teleconnection patterns, J. Atmos. Sci., 40, 1363– 1392. Uppala, S., P. Kallberg, A. Hernandez, S. Saarinen, M. Fiorino, X. Li, K. Onogi, N. Sokka, U. Andrae, and V. Da Costa Bechtold (2004), ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957– 2002, ECMWF Newsl., 101, 2 – 21. van Loon, H., and K. Labitzke (1987), The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation, Mon. Weather Rev., 109, 149– 155. Wallace, J. M., and F.-C. Chang (1982), Interannual variability of the wintertime polar vortex in the Northern Hemisphere middle stratosphere, J. Meteorol. Soc. Jpn., 60, 149–155. Wallace, J. M., and D. S. Gutzler (1981), Teleconnections in the geopotential height field during the Northern Hemisphere winter, Mon. Weather Rev., 109, 784– 812. Williamson, D. L. (1997), Climate simulations with a spectral, semi-Lagrangian model with linear grids, in Numerical Methods in Atmospheric and Ocean Modelling, edited by C. Lin, R. Laprise, and H. Ritchie, pp. 279–292, Can. Meteorol. and Oceanogr. Soc., Ottawa. Williamson, D. L., and J. G. Olson (1994), Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model, Mon. Weather Rev., 122, 1594– 1610. Yulaeva, E., and J. M. Wallace (1994), The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit, J. Clim., 7, 1719– 1736.