Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Another paraconsistent algebraic semantics for Lukasiewicz-Pavelka logic

dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorTurunen, Esko
dc.contributor.authorRuan, Da
dc.contributor.authorMontero De Juan, Francisco Javier
dc.date.accessioned2023-06-19T13:24:28Z
dc.date.available2023-06-19T13:24:28Z
dc.date.issued2014-05-01
dc.description.abstractAs recently proved in a previous work of Turunen, Tsoukias and Ozttirk, starting from an evidence pair (a, h) on the real unit square and associated with a propositional statement a, we can construct evidence matrices expressed in terms of four values t, f, k, u that respectively represent the logical valuations true, false, contradict ion (both true and false) and unknown (neither true nor false) regarding the statement a. The components of the evidence pair (a, h) are to be understood as evidence for and against a, respectively. Moreover, the set of all evidence matrices can be equipped with an injective MV-algebra structure. Thus, the set of evidence matrices can play the role of truth-values of a Lukasiewicz Pavelka fuzzy logic, a rich and applicable mathematical foundation for fuzzy reasoning, and in such a way that the obtained new logic is paraconsistent. In this paper we show that a similar result can be also obtained when the evidence pair (a, h) is given on the real unit triangle. Since the real unit triangle does not admit a natural MV-structure, we introduce some mathematical results to show how this shortcoming can be overcome, and another injective MV-algebra structure in the corresponding set of evidence matrices is obtained. Also, we derive several formulas to explicitly calculate the evidence matrices for the operations associated to the usual connectives.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25831
dc.identifier.citationRodríguez, J.T., Turunen, E., Ruan, D., Montero, J.: Another paraconsistent algebraic semantics for Lukasiewicz–Pavelka logic. Fuzzy Sets and Systems. 242, 132-147 (2014). https://doi.org/10.1016/j.fss.2013.06.011
dc.identifier.doi10.1016/j.fss.2013.06.011
dc.identifier.issn0165-0114
dc.identifier.officialurlhttps//doi.org/10.1016/j.fss.2013.06.011
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0165011413002741#
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33574
dc.journal.titleFuzzy sets and systems
dc.language.isoeng
dc.page.final147
dc.page.initial132
dc.publisherElsevier
dc.relation.projectIDTIN2009-07901
dc.relation.projectIDTIN2012-32482
dc.rights.accessRightsrestricted access
dc.subject.cdu519.2
dc.subject.keywordMathematical fuzzy logic
dc.subject.keywordParaconsistency
dc.subject.keywordMV-algebras
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleAnother paraconsistent algebraic semantics for Lukasiewicz-Pavelka logicen
dc.typejournal article
dc.volume.number242
dspace.entity.typePublication
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscoveryddad170a-793c-4bdc-b983-98d313c81b03

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero201elsevier.pdf
Size:
443 KB
Format:
Adobe Portable Document Format

Collections