Deep-level transient spectroscopy and electrical characterization of ion-implanted p-n junctions into undoped InP

Thumbnail Image
Full text at PDC
Publication Date
Mártil de la Plaza, Ignacio
García, S.
Martín Pacheco, Jaime Miguel
Castán, E.
Dueñas, S.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
Current-voltage, small-signal measurements, and deep-level transient spectroscopy (DLTS) spectra of p-n junctions made by Mg implantation into undoped InP are described. The I-V characteristics show that the dominant conduction mechanism at forward bias is recombination in the space-charge zone, whereas a thermally activated tunneling mechanism involving a trap at 0.32 eV dominates at reverse bias. Five deep levels located in the upper-half of the band gap were detected in the junctions by DLTS measurements, three of which (at 0.6, 0.45, and 0.425 eV) were found to appear due to rapid thermal annealing. The origin of the other two levels, at 0.31 and 0.285 eV, can be ascribed to implantation damage. Admittance spectroscopy measurements showed the presence of three levels at 0.44, 0.415, and 0.30 eV, all in agreement with those found by DLTS. The DLTS measurements showed that the concentration of deep levels decreased after longer annealing times, and that the concentration of deep levels due to the implantation increased after additional P or Si implantations. This explains the influence of annealing time and additional implantations on the I-V characteristics of the junctions.
© American Institute of Physics. The authors thank the Centro de Investigación y Desarrollo de la Armada (CIDA) for assistance with lithography. This work has been partly supported by Project No. TIC93/175 of the Spanish CICYT.
Unesco subjects
1) M.V. Rao, Appl. Phys. Lett., 48, 1522 (1986). 2) M.V. Rao and P E. Thompson, Appl. Phys. Lett., 50, 1444 (1987). 3) H. Shen, G. Yang, 2. Zhou, and S. Zou, Appl. Phys. Lett., 56, 463 (1990). 4) T.D. Thompson, J. Barbara, and M.C. Ridgway, J. Appl. Phys., 71, 6073 (1992). 5) J.J. Berenz, F.B. Fank, and T.L. Hierl, Electron. Lett., 14, 684 (1978). 6) C.A. Armiento, J.P. Donnelly, and S.H. Groves, Appl. Phys. Lett., 34, 229 (1979). 7) C.J. Keavney and M.B. Spitzer, Appl. Phys. Lett., 52, 1439 (1988). 8) K. Oigawa, S. Uekusa, Y. Sugiyama, and M. Tacano, Jpn. J. Appl. Phys., 25, 1902 (1986). 9) S.J. Kim, K.W. Wang, G.P. Vella-Coleiro, J.W. Lutze, Y. Ota, and G. Guth, IEEE Electron Device Lett. EDL-8, 518 (1987). 10) J.B. Boos, W. Kruppa, and B. Molnar, IEEE Electron Device Lett. EDL-10, 79 (1989). 11) A.L. Conjeaud, B. Orsal, A. Dhouib, R. Alabedra, and L. Gouskov, J. Appl. Phys., 59, 1707 (1986). 12) P. Kringhoj, Mater. Sci. Eng. B, 9, 315 (1991). 13) J.M. Martín and G. González-Díaz, Nucl. Instrum. Methods B, 88, 331 (1994). 14) J.M. Martín, S. García, E. Calle, I. Mátil, and G. González-Díaz, J. Electron. Mater., 24, 59 (1995). 15) J.M. Martín, S. García, I. Mártil, G. González-Díaz, R. Cuscó, and L. Artús, Proceedings of the First International Conference on Materials for Microelectronics (The Institute of Materials, Barcelona, 1994), p. 17. 16) S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981). 17) J.M. Martín, S. García, I. Mártil, and G. González-Díaz, (unpublished). 18) G. Vincent, A. Chantre, and D. Bois, J. Appl. Phys., 50, 5484 (1979). 19) J. Cheng, S.R. Forrest, B. Tell, D. Wilt, B. Schwartz, and P. Wright, J. Appl. Phys., 58, 1787 (1985). 20) W. Haussler and D. Romer, J. Appl. Phys., 67, 3400 (1990). 21) D.V. Lang, J. Appl. Phys., 45, 3023 (1974). 22) W.R. Thurber, R.A. Forman, and W.E. Philips, J. Appl. Phys., 53, 7397 (1982). 23) P. Omling, L. Samuelson, and H.G. Grimmeiss, J. Appl. Phys., 54, 5117 (1983). 24) P.M. Mooney, T.N. Theis, and S.L. Wright, Appl. Phys. Lett., 53, 1546 (1988). 25) L. Enríquez, S. Dueñas, J. Barbolla, I. Izpura, and E. Muñoz, J. Appl. Phys., 72, 525 (1992). 26) J. Barbolla, S. Dueñas, and L. Bailon, Solid-State Electron., 35, 285 (1992). 27) D.L. Loose, Appl. Phys. Lett., 21, 54 (1972). 28) D.L. Loose, J. Appl. Phys., 46, 2204 (1975). 29) J.L. Pautrat, B. Katircioglu, N. Magnea, D. Bensahel, J. C. Pfister, and L. Revoil, Solid State Electron., 23, 1159 (1980). 30) J.K. Luo, T. Kimura, S. Yugo, and Y. Adachi, Jpn. J. Appl. Phys., 26, 82 (1987). 31) E.K. Kim, H.Y. Cho, J.H. Yoon, S. Min, Y.L. Jung, and W. H. Lee, J. Appl. Phys., 68, 1665 (1990). 32) C.S. Ma, P.W. Chan, V.C. Lp, C.W. Ong, and S.P Wong, J. Electron. Mater., 23, 459 (1994). 33) K.L. Liao, A.J. Soltyka, W.A. Anderson, and A. Katz, Appl. Phys. Len., 57, 1913 (1990). 34) S.J. Pearton and A. Katz, Mater. Sci. Eng. B, 18, 153 (1993). 35) J.D. Oberstar and B.G. Streetman, Thin Solid Films, 103, 17 (1983). 36) N. Yamamoto, K. Uwai, and K. Takahei, J. Appl. Phys., 65, 3072 (1989). 37) A.A. Iliadis, S.C. Laith, and E.A. Martin, Appl. Phys. Lett., 54, 1436 (1989). 38) W. Kruppa, J.B. Boos, and T.F. Carruthers, Proceedings of the Third International Conference on InP and Related Materials (IEEE, New York, 1991), IEEE Catalog #91CH2950-4. 39) R.W. Jansen, Phys. Rev. B, 41, 7666 (1990). 40) T.D. Thompson, J. Barbara, and M.C. Ridgway, J. Appl. Phys. 71, 6073 (1992). 41) S. Dueñas, E. Castán, L. Enríquez, J. Barbolla, J. Montserrat, and E. Lora-Tamayo, Semicond. Sci. Technol., 9, 1637 (1994).