Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep-level transient spectroscopy and electrical characterization of ion-implanted p-n junctions into undoped InP

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorGarcía, S.
dc.contributor.authorMartín Pacheco, Jaime Miguel
dc.contributor.authorCastán, E.
dc.contributor.authorDueñas, S.
dc.date.accessioned2023-06-20T19:08:39Z
dc.date.available2023-06-20T19:08:39Z
dc.date.issued1995-11-01
dc.description© American Institute of Physics. The authors thank the Centro de Investigación y Desarrollo de la Armada (CIDA) for assistance with lithography. This work has been partly supported by Project No. TIC93/175 of the Spanish CICYT.
dc.description.abstractCurrent-voltage, small-signal measurements, and deep-level transient spectroscopy (DLTS) spectra of p-n junctions made by Mg implantation into undoped InP are described. The I-V characteristics show that the dominant conduction mechanism at forward bias is recombination in the space-charge zone, whereas a thermally activated tunneling mechanism involving a trap at 0.32 eV dominates at reverse bias. Five deep levels located in the upper-half of the band gap were detected in the junctions by DLTS measurements, three of which (at 0.6, 0.45, and 0.425 eV) were found to appear due to rapid thermal annealing. The origin of the other two levels, at 0.31 and 0.285 eV, can be ascribed to implantation damage. Admittance spectroscopy measurements showed the presence of three levels at 0.44, 0.415, and 0.30 eV, all in agreement with those found by DLTS. The DLTS measurements showed that the concentration of deep levels decreased after longer annealing times, and that the concentration of deep levels due to the implantation increased after additional P or Si implantations. This explains the influence of annealing time and additional implantations on the I-V characteristics of the junctions.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish CICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27113
dc.identifier.doi10.1063/1.359710
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.359710
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59307
dc.issue.number9
dc.journal.titleJournal of applied physics
dc.language.isoeng
dc.page.final5330
dc.page.initial5325
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTIC93/175
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordNon-Exponential Transients
dc.subject.keywordAdmittance Spectroscopy
dc.subject.keywordFe
dc.subject.keywordEmission
dc.subject.keywordDiodes
dc.subject.keywordTraps.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleDeep-level transient spectroscopy and electrical characterization of ion-implanted p-n junctions into undoped InP
dc.typejournal article
dc.volume.number78
dcterms.references1) M.V. Rao, Appl. Phys. Lett., 48, 1522 (1986). 2) M.V. Rao and P E. Thompson, Appl. Phys. Lett., 50, 1444 (1987). 3) H. Shen, G. Yang, 2. Zhou, and S. Zou, Appl. Phys. Lett., 56, 463 (1990). 4) T.D. Thompson, J. Barbara, and M.C. Ridgway, J. Appl. Phys., 71, 6073 (1992). 5) J.J. Berenz, F.B. Fank, and T.L. Hierl, Electron. Lett., 14, 684 (1978). 6) C.A. Armiento, J.P. Donnelly, and S.H. Groves, Appl. Phys. Lett., 34, 229 (1979). 7) C.J. Keavney and M.B. Spitzer, Appl. Phys. Lett., 52, 1439 (1988). 8) K. Oigawa, S. Uekusa, Y. Sugiyama, and M. Tacano, Jpn. J. Appl. Phys., 25, 1902 (1986). 9) S.J. Kim, K.W. Wang, G.P. Vella-Coleiro, J.W. Lutze, Y. Ota, and G. Guth, IEEE Electron Device Lett. EDL-8, 518 (1987). 10) J.B. Boos, W. Kruppa, and B. Molnar, IEEE Electron Device Lett. EDL-10, 79 (1989). 11) A.L. Conjeaud, B. Orsal, A. Dhouib, R. Alabedra, and L. Gouskov, J. Appl. Phys., 59, 1707 (1986). 12) P. Kringhoj, Mater. Sci. Eng. B, 9, 315 (1991). 13) J.M. Martín and G. González-Díaz, Nucl. Instrum. Methods B, 88, 331 (1994). 14) J.M. Martín, S. García, E. Calle, I. Mátil, and G. González-Díaz, J. Electron. Mater., 24, 59 (1995). 15) J.M. Martín, S. García, I. Mártil, G. González-Díaz, R. Cuscó, and L. Artús, Proceedings of the First International Conference on Materials for Microelectronics (The Institute of Materials, Barcelona, 1994), p. 17. 16) S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981). 17) J.M. Martín, S. García, I. Mártil, and G. González-Díaz, (unpublished). 18) G. Vincent, A. Chantre, and D. Bois, J. Appl. Phys., 50, 5484 (1979). 19) J. Cheng, S.R. Forrest, B. Tell, D. Wilt, B. Schwartz, and P. Wright, J. Appl. Phys., 58, 1787 (1985). 20) W. Haussler and D. Romer, J. Appl. Phys., 67, 3400 (1990). 21) D.V. Lang, J. Appl. Phys., 45, 3023 (1974). 22) W.R. Thurber, R.A. Forman, and W.E. Philips, J. Appl. Phys., 53, 7397 (1982). 23) P. Omling, L. Samuelson, and H.G. Grimmeiss, J. Appl. Phys., 54, 5117 (1983). 24) P.M. Mooney, T.N. Theis, and S.L. Wright, Appl. Phys. Lett., 53, 1546 (1988). 25) L. Enríquez, S. Dueñas, J. Barbolla, I. Izpura, and E. Muñoz, J. Appl. Phys., 72, 525 (1992). 26) J. Barbolla, S. Dueñas, and L. Bailon, Solid-State Electron., 35, 285 (1992). 27) D.L. Loose, Appl. Phys. Lett., 21, 54 (1972). 28) D.L. Loose, J. Appl. Phys., 46, 2204 (1975). 29) J.L. Pautrat, B. Katircioglu, N. Magnea, D. Bensahel, J. C. Pfister, and L. Revoil, Solid State Electron., 23, 1159 (1980). 30) J.K. Luo, T. Kimura, S. Yugo, and Y. Adachi, Jpn. J. Appl. Phys., 26, 82 (1987). 31) E.K. Kim, H.Y. Cho, J.H. Yoon, S. Min, Y.L. Jung, and W. H. Lee, J. Appl. Phys., 68, 1665 (1990). 32) C.S. Ma, P.W. Chan, V.C. Lp, C.W. Ong, and S.P Wong, J. Electron. Mater., 23, 459 (1994). 33) K.L. Liao, A.J. Soltyka, W.A. Anderson, and A. Katz, Appl. Phys. Len., 57, 1913 (1990). 34) S.J. Pearton and A. Katz, Mater. Sci. Eng. B, 18, 153 (1993). 35) J.D. Oberstar and B.G. Streetman, Thin Solid Films, 103, 17 (1983). 36) N. Yamamoto, K. Uwai, and K. Takahei, J. Appl. Phys., 65, 3072 (1989). 37) A.A. Iliadis, S.C. Laith, and E.A. Martin, Appl. Phys. Lett., 54, 1436 (1989). 38) W. Kruppa, J.B. Boos, and T.F. Carruthers, Proceedings of the Third International Conference on InP and Related Materials (IEEE, New York, 1991), IEEE Catalog #91CH2950-4. 39) R.W. Jansen, Phys. Rev. B, 41, 7666 (1990). 40) T.D. Thompson, J. Barbara, and M.C. Ridgway, J. Appl. Phys. 71, 6073 (1992). 41) S. Dueñas, E. Castán, L. Enríquez, J. Barbolla, J. Montserrat, and E. Lora-Tamayo, Semicond. Sci. Technol., 9, 1637 (1994).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,108libre.pdf
Size:
652.76 KB
Format:
Adobe Portable Document Format

Collections