Singularity patterns in a chemotaxis model
Loading...
Download
Full text at PDC
Publication date
1996
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
The authors study a chemotactic model under certain assumptions and obtain the existence of a class of solutions which blow up at the center of an open disc in finite time. Such a finite-time blow-up of solutions implies chemotactic collapse, namely, concentration of species to form sporae. The model studied is the limiting case of a basic chemotactic model when diffusion of the chemical approaches infinity, which has the form ut=Δu−χ(uv), 0=Δv+(u−1), on ΩR2, where Ω is an open disc with no-flux (homogeneous Neumann) boundary conditions. The initial conditions are continuous functions u(x,0)=u0(x)≥0, v(x,0)=v0(x)≥0 for xΩ. Under these conditions, the authors prove there exists a radially symmetric solution u(r,t) which blows up at r=0, t=T<∞. A specific description of such a solution is presented. The authors also discuss the strong similarity between the chemotactic model they study and the classical Stefan problem.