Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Singularity patterns in a chemotaxis model

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:04:18Z
dc.date.available2023-06-20T17:04:18Z
dc.date.issued1996-09
dc.description.abstractThe authors study a chemotactic model under certain assumptions and obtain the existence of a class of solutions which blow up at the center of an open disc in finite time. Such a finite-time blow-up of solutions implies chemotactic collapse, namely, concentration of species to form sporae. The model studied is the limiting case of a basic chemotactic model when diffusion of the chemical approaches infinity, which has the form ut=Δu−χ(uv), 0=Δv+(u−1), on ΩR2, where Ω is an open disc with no-flux (homogeneous Neumann) boundary conditions. The initial conditions are continuous functions u(x,0)=u0(x)≥0, v(x,0)=v0(x)≥0 for xΩ. Under these conditions, the authors prove there exists a radially symmetric solution u(r,t) which blows up at r=0, t=T<∞. A specific description of such a solution is presented. The authors also discuss the strong similarity between the chemotactic model they study and the classical Stefan problem.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17199
dc.identifier.doi10.1007/BF01445268
dc.identifier.issn0025-5831
dc.identifier.officialurlhttp://www.springerlink.com/content/k583061277m26u8x/
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57724
dc.issue.number1
dc.journal.titleMathematische Annalen
dc.language.isoeng
dc.page.final623
dc.page.initial583
dc.publisherSpringer
dc.relation.projectIDPB93-0438
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu51:57
dc.subject.keywordBlow-up
dc.subject.keywordequations
dc.subject.keywordradial solutions
dc.subject.keywordchemotactic collapse
dc.subject.ucmBiomatemáticas
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco2404 Biomatemáticas
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleSingularity patterns in a chemotaxis model
dc.typejournal article
dc.volume.number306
dcterms.referencesW. Alt: Orientation of cells migrating in a chemotatic gradient. Lectures Notes in Biomath. vol. 38, Springer-Verlag (1980), 353-366. W. Alt: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9 (1980), 147-177. SB. Angenent, JJ.L. Velázquez: Degenerate neckpinches in mean curvature flow. To appear. E. Bombieri, E. De Giorgi, E. Giusti: Minimal cones and the Bernstein problem. Inventiones Math. 7 (1969), 243-268. S. Childress: Chemotactic collapse in two dimensions. Lectures Notes in Biomath. vol. 55, Springer-Verlag (1984), 61-66. S. Childress, JK. Percus: Nonlinear aspects of chemotaxis. Math. Biosci. 56 (1981), 217-237. J.I. Diaz, T. Nagai: Symmetrization in a parabolic-elliptic system related to chemotaxis. Adv. Math. Sci. Appl., to appear. Y. Giga, RV. Kohn: Asymptolically self-similar blow-up of semilinear heal equations. Comm. Pure Appl. Math. 38(1985),297-319. MA. Herrero, J JL. Velazquez: Explosion des solutions d'équations paraboliques semilinéaires supercritiques. C.R. Acad. Sci. Paris t. 319, 1 (1994), 141-145. MA. Herrero, J JL. Velazquez: On the melting of ice balls. SIAM J Math. Anal, to appear. W. Jäger, S. Luckhaus: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., vol. 329, n. 2 (1992), 819-824. EF. Keller, LA. Segel: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. T. Nagai: Blow-up of radially symmetrie solutions to a chemotaxis system. To appear in Adv. Math. Sci. Appl. V. Nanjundiah: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42 (1973),63-105. JJL. Velazquez: Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow. Annali Scuola Normale Superiore di Pisa, Serie IV, vol. XXI, Fase. 4 (1994),595-628.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero35.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format

Collections