Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum non-gravity and stellar collapse

dc.contributor.authorBarceló, Carlos
dc.contributor.authorGaray Elizondo, Luis Javier
dc.contributor.authorJannes, Gil
dc.date.accessioned2023-06-20T03:49:48Z
dc.date.available2023-06-20T03:49:48Z
dc.date.issued2011-09
dc.description© Springer. Financial support was provided by the Spanish MICINN through the projects FIS2008-06078- C03-01 and FIS2008-06078-C03-03 and by Junta de Andalucía through the projects FQM2288 and FQM219. The authors want to thank J.L. Jaramillo, S. Liberati, S. Sonego and M. Visser for some illuminating discussions.eng
dc.description.abstractObservational indications combined with analyses of analogue and emergent gravity in condensed matter systems support the possibility that there might be two distinct energy scales related to quantum gravity: the scale that sets the onset of quantum gravitational effects E-B ( related to the Planck scale) and the much higher scale E-L signalling the breaking of Lorentz symmetry. We suggest a natural interpretation for these two scales: E-L is the energy scale below which a special relativistic spacetime emerges, E-B is the scale below which this spacetime geometry becomes curved. This implies that the first 'quantum' gravitational effect around E-B could simply be that gravity is progressively switched off, leaving an effective Minkowski quantum field theory up to much higher energies of the order of E-L. This scenario may have important consequences for gravitational collapse, inasmuch as it opens up new possibilities for the final state of stellar collapse other than an evaporating black hole.eng
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipJunta de Andalucia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29691
dc.identifier.citationBarceló, C., L. J. Garay, y G. Jannes. «Quantum Non-Gravity and Stellar Collapse». Foundations of Physics 41, n.o 9 (1 de septiembre de 2011): 1532-41. https://doi.org/10.1007/s10701-011-9577-9.
dc.identifier.doi10.1007/s10701-011-9577-9
dc.identifier.issn0015-9018
dc.identifier.officialurlhttp://dx.doi.org/10.1007/s10701-011-9577-9
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.relatedurlhttp://inspirehep.net/record/846846/files/arXiv:1002.4651.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44517
dc.issue.number9
dc.journal.titleFoundations of Physics
dc.language.isospa
dc.page.final15
dc.page.initial1532
dc.publisherSpringer
dc.relation.projectIDFIS2008-06078-C03-01
dc.relation.projectIDFIS2008-06078-C03-03
dc.relation.projectIDFQM2288
dc.relation.projectIDFQM219
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordPhysics
dc.subject.keywordMultidisciplinary
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleQuantum non-gravity and stellar collapse
dc.typejournal article
dc.volume.number41
dcterms.references[1] T. Jacobson, S. Liberati and D. Mattingly, “Lorentz violation at high energy: concepts, phenomena and astrophysical constraints,” Annals Phys. 321 (2006) 150 [arXiv:astro-ph/0505267]. [2] L. Maccione, A. M. Taylor, D. M. Mattingly and S. Liberati, “Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays,” JCAP 0904, 022 (2009) [arXiv:0902.1756 [astro-ph.HE]]. [3] G. Volovik, “From quantum hydrodynamics to quantum gravity,” in: H. Kleinert, R. T. Jantzen and R. Ruffini (eds.), Proceedings of the 11th Marcel Grossmann Meeting on General Relativity, World Scientific, Singapore (2008) [arXiv:gr-qc/0612134]. [4] G. E. Volovik, The Universe in a helium droplet, Clarendon Press, Oxford (2003). [5] G. E. Volovik, “Fermi-point scenario for emergent gravity,” PoS QG-Ph:043 (2007 [arXiv:0709.1258 [gr-qc]]. [6] M.F. Atiyah, R. Bott and A. Shapiro, “Clifford Modules,” Topology 3 Suppl. 1, 3 (1964). [7] P. Hořava, “Stability of Fermi surfaces and K-theory,” Phys. Rev. Lett. 95, 016405 (2005). [hep-th/0503006]. [8] A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation,” Sov. Phys. Dokl. 12, 1040 (1968) [Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)]. [9] M. Visser, “Sakharov’s induced gravity: A modern perspective,” Mod. Phys. Lett. A 17 (2002) 977 [arXiv:grqc/0204062]. [10] C. Barcel´o, S. Liberati and M. Visser, “Analogue gravity,” Living Rev. Rel. 8, 12 (2005) [arXiv:gr-qc/0505065]. http://www.livingreviews.org/lrr-2005-12. [11] S. Weinberg and E. Witten, “Limits On Massless Particles,” Phys. Lett. B 96 (1980) 59. [12] S. Boughn, “Nonquantum Gravity,” Found. Phys. 39, 331 (2009) [arXiv:0809.4218 [gr-qc]]. [13] C. Barceló, S. Liberati, S. Sonego and M. Visser, “Fate of gravitational collapse in semiclassical gravity,” Phys. Rev. D 77, 044032 (2008) [arXiv:0712.1130 [gr-qc]]. [14] C. Barceló, S. Liberati, S. Sonego and M. Visser, “Hawking-like radiation does not require a trapped region,” Phys. Rev. Lett. 97, 171301 (2006) [arXiv:grqc/0607008]. [15] A. Ashtekar and M. Bojowald, “Black hole evaporation: A paradigm,” Class. Quant. Grav. 22, 3349 (2005) [arXiv:gr-qc/0504029]. [16] P. O. Mazur, E. Mottola, “Gravitational vacuum condensate stars,” Proc. Nat. Acad. Sci. 101, 9545-9550 (2004). [arXiv:gr-qc/0407075].
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublicationae930275-eba1-4573-89eb-78eba8767b2e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay08preprint.pdf
Size:
288.55 KB
Format:
Adobe Portable Document Format

Collections