Quantum non-gravity and stellar collapse
dc.contributor.author | Barceló, Carlos | |
dc.contributor.author | Garay Elizondo, Luis Javier | |
dc.contributor.author | Jannes, Gil | |
dc.date.accessioned | 2023-06-20T03:49:48Z | |
dc.date.available | 2023-06-20T03:49:48Z | |
dc.date.issued | 2011-09 | |
dc.description | © Springer. Financial support was provided by the Spanish MICINN through the projects FIS2008-06078- C03-01 and FIS2008-06078-C03-03 and by Junta de Andalucía through the projects FQM2288 and FQM219. The authors want to thank J.L. Jaramillo, S. Liberati, S. Sonego and M. Visser for some illuminating discussions. | eng |
dc.description.abstract | Observational indications combined with analyses of analogue and emergent gravity in condensed matter systems support the possibility that there might be two distinct energy scales related to quantum gravity: the scale that sets the onset of quantum gravitational effects E-B ( related to the Planck scale) and the much higher scale E-L signalling the breaking of Lorentz symmetry. We suggest a natural interpretation for these two scales: E-L is the energy scale below which a special relativistic spacetime emerges, E-B is the scale below which this spacetime geometry becomes curved. This implies that the first 'quantum' gravitational effect around E-B could simply be that gravity is progressively switched off, leaving an effective Minkowski quantum field theory up to much higher energies of the order of E-L. This scenario may have important consequences for gravitational collapse, inasmuch as it opens up new possibilities for the final state of stellar collapse other than an evaporating black hole. | eng |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.sponsorship | Junta de Andalucia | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29691 | |
dc.identifier.citation | Barceló, C., L. J. Garay, y G. Jannes. «Quantum Non-Gravity and Stellar Collapse». Foundations of Physics 41, n.o 9 (1 de septiembre de 2011): 1532-41. https://doi.org/10.1007/s10701-011-9577-9. | |
dc.identifier.doi | 10.1007/s10701-011-9577-9 | |
dc.identifier.issn | 0015-9018 | |
dc.identifier.officialurl | http://dx.doi.org/10.1007/s10701-011-9577-9 | |
dc.identifier.relatedurl | http://link.springer.com | |
dc.identifier.relatedurl | http://inspirehep.net/record/846846/files/arXiv:1002.4651.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44517 | |
dc.issue.number | 9 | |
dc.journal.title | Foundations of Physics | |
dc.language.iso | spa | |
dc.page.final | 15 | |
dc.page.initial | 1532 | |
dc.publisher | Springer | |
dc.relation.projectID | FIS2008-06078-C03-01 | |
dc.relation.projectID | FIS2008-06078-C03-03 | |
dc.relation.projectID | FQM2288 | |
dc.relation.projectID | FQM219 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Physics | |
dc.subject.keyword | Multidisciplinary | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Quantum non-gravity and stellar collapse | |
dc.type | journal article | |
dc.volume.number | 41 | |
dcterms.references | [1] T. Jacobson, S. Liberati and D. Mattingly, “Lorentz violation at high energy: concepts, phenomena and astrophysical constraints,” Annals Phys. 321 (2006) 150 [arXiv:astro-ph/0505267]. [2] L. Maccione, A. M. Taylor, D. M. Mattingly and S. Liberati, “Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays,” JCAP 0904, 022 (2009) [arXiv:0902.1756 [astro-ph.HE]]. [3] G. Volovik, “From quantum hydrodynamics to quantum gravity,” in: H. Kleinert, R. T. Jantzen and R. Ruffini (eds.), Proceedings of the 11th Marcel Grossmann Meeting on General Relativity, World Scientific, Singapore (2008) [arXiv:gr-qc/0612134]. [4] G. E. Volovik, The Universe in a helium droplet, Clarendon Press, Oxford (2003). [5] G. E. Volovik, “Fermi-point scenario for emergent gravity,” PoS QG-Ph:043 (2007 [arXiv:0709.1258 [gr-qc]]. [6] M.F. Atiyah, R. Bott and A. Shapiro, “Clifford Modules,” Topology 3 Suppl. 1, 3 (1964). [7] P. Hořava, “Stability of Fermi surfaces and K-theory,” Phys. Rev. Lett. 95, 016405 (2005). [hep-th/0503006]. [8] A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation,” Sov. Phys. Dokl. 12, 1040 (1968) [Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)]. [9] M. Visser, “Sakharov’s induced gravity: A modern perspective,” Mod. Phys. Lett. A 17 (2002) 977 [arXiv:grqc/0204062]. [10] C. Barcel´o, S. Liberati and M. Visser, “Analogue gravity,” Living Rev. Rel. 8, 12 (2005) [arXiv:gr-qc/0505065]. http://www.livingreviews.org/lrr-2005-12. [11] S. Weinberg and E. Witten, “Limits On Massless Particles,” Phys. Lett. B 96 (1980) 59. [12] S. Boughn, “Nonquantum Gravity,” Found. Phys. 39, 331 (2009) [arXiv:0809.4218 [gr-qc]]. [13] C. Barceló, S. Liberati, S. Sonego and M. Visser, “Fate of gravitational collapse in semiclassical gravity,” Phys. Rev. D 77, 044032 (2008) [arXiv:0712.1130 [gr-qc]]. [14] C. Barceló, S. Liberati, S. Sonego and M. Visser, “Hawking-like radiation does not require a trapped region,” Phys. Rev. Lett. 97, 171301 (2006) [arXiv:grqc/0607008]. [15] A. Ashtekar and M. Bojowald, “Black hole evaporation: A paradigm,” Class. Quant. Grav. 22, 3349 (2005) [arXiv:gr-qc/0504029]. [16] P. O. Mazur, E. Mottola, “Gravitational vacuum condensate stars,” Proc. Nat. Acad. Sci. 101, 9545-9550 (2004). [arXiv:gr-qc/0407075]. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5638c18d-1c35-40d2-8b77-eb558c27585e | |
relation.isAuthorOfPublication | ae930275-eba1-4573-89eb-78eba8767b2e | |
relation.isAuthorOfPublication.latestForDiscovery | 5638c18d-1c35-40d2-8b77-eb558c27585e |
Download
Original bundle
1 - 1 of 1