Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sur la variété des lois d'algèbres de Lie nilpotentes complexes

Loading...
Thumbnail Image

Full text at PDC

Publication date

1989

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Università di Cagliari
Citations
Google Scholar

Citation

Abstract

Let N i be the variety of laws of i -dimensional nilpotent complex Lie algebras, N ˜ i the quotient space of orbits under the canonical action of the full linear group and U i ⊂N i the open subset composed of filiform Lie algebras. M. Vergne determined U 7 and showed that N i is reducible for i=7 and i≥11 . In a previous paper the authors proved that U ˜ 8 and N ˜ 8 are unions of points and lines. In this note they study N 9 and choose in U 9 four continuous families with two parameters. One may ask whether each of these families generates a component of N 9 . However, it seems that the authors may give a positive answer to the problem of reducibility for N i , 8≤i≤10 .

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections